
The Minimum Entropy Submodular Set Cover
Problem?

Gabriel Istrate1,2, Cosmin Bonchiş1,2, and Liviu P. Dinu3

1 Department of Computer Science, West University of Timişoara, Bd. V. Pârvan 4,
Timişoara, Romania. Corresponding author’s email: gabrielistrate@acm.org

2 e-Austria Research Institute, Bd. V. Pârvan 4, cam. 045 B, Timişoara, Romania.
3 Faculty of Mathematics and Computer Science, University of Bucharest, Romania.

Abstract. We study minimum entropy submodular set cover, a variant
of the submodular set cover problem (Wolsey [22], Fujito [11], etc) that
generalizes the minimum entropy set cover problem (Halperin and Karp
[12], Cardinal et al. [5])
We give a general bound of the approximation performance of the greedy
algorithm using an approach that can be interpreted in terms of a partic-
ular type of biased network flows. As an application we rederive known
results for the Minimum Entropy Set Cover and Minimum Entropy Ori-
entation problems, and obtain a nontrivial bound for a new problem
called the Minimum Entropy Spanning Tree problem.
The problem can be applied to (and is partly motivated by) a worst-case
approach to fairness in concave cooperative games.

1 Introduction

Submodularity encodes the notion of diminishing returns and plays a crucial
role in many problems in combinatorial optimization [10], cooperative game the-
ory [20, 8], information theory [17] and in applications like clustering, learning,
natural language and signal processing or constraint satisfaction. Submodular
optimization is well-understood: minimization has polynomial time algorithms
[19, 13]; maximization is intractable but has efficient approximation algorithms.
Minimizing the cost is not the only possible objective for submodular optimiza-
tion: a problem in computational biology led Halperin and Karp [12] to study
a minimum entropy version of the set cover problem (MESC). MESC is NP-
hard, but the GREEDY algorithm produces [12] an approximate solution with
an additive approximation guarantee. The optimal constant is log2(e) [5].

It must be stressed that minimizing entropy is a reasonably common scenario:
the authors of [5] subsequently studied other combinatorial problems under min-
imum entropy objectives [6, 7]. Minimal entropy graph coloring is relevant in
coding and information theory [2]. Entropy minimization has been applied e.g.
to word segmentation [21] or (for the non-extensive entropy) to maximum par-
simony haplotype inference [15].

? Supported by CNCS IDEI Grant PN-II-ID-PCE-2011-3-0981 “Structure and com-
putational difficulty in combinatorial optimization: an interdisciplinary approach.”

In this paper we join these two directions, submodularity and combinatorial
optimization under a minimum entropy objective, by investigating an extension
of problem MESC we call minimum entropy submodular set cover (MESSC).
While the problem is clearly NP-complete (as a generalization of MESC), our
main result show that the approximation guarantees of the GREEDY algorithm
for MESC extend to MESSC, with the additional appearance of a certain cover-
ing parameter that has an interpretation in terms of a type of certain “biased”
network flows. This interpretation allows a fairly illuminating rederivation of re-
sults in [6, 7] and applications to several new problems, special cases of MESSC.

Besides the conceptual integration, the framework we investigate was devel-
oped with several applications in mind. The most important of them (developed
in a companion paper [4]) concerns the development of a worst-case approach
to fairness in concave cooperative games similar in spirit to the price of
anarchy from noncooperative game theory. We measure inequality of an alloca-
tion in the core by the entropy of the associate distribution, and seek allocations
in the core minimizing entropy. Here we analyze a concrete example of such a
game, the minimum entropy spanning tree (MEST) problem.

The plan of the paper is as follows: in Section 2 we briefly review some rel-
evant concepts and notions. In Section 3 define the problems we are interested
in and point that they are NP-hard; next we introduce a greedy approach to
minimum entropy submodular set cover. Section 4 contains our main result: we
quantify the performance of the GREEDY algorithm in terms of an instance-
specific ”covering constant”. We then rederive (in Section 6) existing results on
the performance of the GREEDY algorithm for the Minimum Entropy Orien-
tations and Set Cover problems [6, 7]. Section 7 contains an interpretation of
the covering constant using network flows that allows us to tighten up our main
theorem using a ”multi-level” version of our covering constant. As an application
we obtain in Section 8 a result on the approximability of the Minimum Entropy
Spanning Tree problem that matches the log2(e) bound for MESC from [5].

2 Preliminaries

We will use the Shannon entropy of a distribution P = (pi)i∈I , defined as
Ent(P) = −

∑
i∈I pi log2(pi). We will assume general familiarity with submodu-

lar optimization, see e.g. [10]. In particular a set function f : P(U)→ R+ will be
called integer if range(f) ⊆ Z, monotone if f(S) ≤ f(T) whenever S ⊆ T ⊆ U ,
submodular if f(S) + f(T) ≥ f(S ∪ T) + f(S ∩ T) for all S, T ⊆ U , modular if
f(S) + f(T) = f(S ∪ T) + f(S ∩ T) for all S, T ⊆ U , and polymatroid if f is
monotone, submodular and satisfies f(∅) = 0.

An instance of the (Minimum Cost) Set Cover (SC) is specified by an universe
Z and a family P = {P1, . . . ,Pm} of parts of Z. Each set Pi comes with a
nonnegative cost c(i). Given set X ⊆ Z, a cover of X is a function g : X → [m]
such that for every x ∈ X, x ∈ Pg(x) (“x is covered by Pg(x)”). The goal is to
find a cover g of Z whose cost, defined as cost[g] =

∑
j∈range(g)

c(Pj), is minimized.

The following classical generalization called submodular set cover (SSC) [22, 11]
shares many properties with problem SC: we are given an integer polymatroid
f and a cost function c : U → R+. The cost of a set S ⊆ U , denoted cost(S),
is simply the sum of costs of its elements. Feasible solutions to SSC are subsets
S ⊆ U with f(S) = f(U). The goal is to find a feasible subset S ⊆ U of minimum
cost cost(S).

For readers not familiar with SSC it is worth discussing the representation
of problem SC as a special case of SSC. Given an instance (X,P) of SC of unit
costs, define corresponding instance (U, f) of SSC as follows:

1. U = {1, 2, . . . ,m}.
2. For S ⊆ U define XS =

⋃
i∈S Pi and f(S) = |XS |.

It is well-known that function f defined above is submodular. A set S ⊆ U
with f(S) = f(U) corresponds to a family of parts {Pi}i∈S which cover X.

An equivalent restatement of problem SSC relies on the notion of matroid
and related concepts (such as basis and flats) we will assume known (see [18]):

Proposition 1. The following problem is equivalent to SSC: given matroid M =
(U, I) and a covering P = {P1, . . . ,Pm} of the universe U find a basis B of M
and a cover g : B → [m] of B such that c[g] is minimized.

Proof. The first part of the statement is a weaker version of a classical result
(e.g. Proposition 12.1.9 in [18], where it is further required that sets Pi be flats),
stated as follows:

Lemma 1. Let g : P([m]) → Z+ be an integral polymatroid. Then there exists
a matroid M = (U, I) and a family of disjoint parts P1, . . . , Pm such that for all
S ⊆ [m],

g(S) = rankM (∪i∈SPi).

To make the paper self-contained we provide a variant of the proof of Lemma 1
that is simpler to understand than the original version:

Proof. Define

U = {x1,1, x1,2, . . . x1,f({1}), x2,1, x2,2, . . . x2,f({2}), . . . , xm,1, xm,2, . . . xm,f({m})}.

Also define, for i ∈ [m], Pi = {xm,1, xm,2, . . . xm,f({m})} Finally, if A ⊆ U define
λi = |A∩Pi|. Then we let A ∈ I precisely when there exist nonnegative integers
µ1, µ2, . . . , µm with

µ1 + µ2 + . . .+ µm = f([m]),

for all S ⊆ [m] ∑
i∈S

µi ≤ f(S)

and for all i ∈ [m]
λi ≤ µi

It is immediate that M = (U, I) is a matroid (for all bases in I have the same
cardinality f([m]).

By definition of I, for any S ⊆ [m] any independent set B ⊆ ∪i∈SPi has
cardinal at most f(S). To show that the equality holds it is enough to construct
an independent set W with this property.

This is easy to accomplish: for any permutation π ∈ Sm the natural modi-
fication of the greedy algorithm that uses π to create an element of the core of
the concave cooperative game with cost function f will yield a basis B in M .
Any permutation π such that all indices in S appear before any index in [m] \S
leads to basis B such that |B ∩ ∪i∈SPi| = f(S).

ut
ut

On the other hand, Halperin and Karp introduced [12] the following variation
on SC called Minimum Entropy Set Cover (MESC): Consider an instance of SC,
Z = {u1, u2, . . . , un}, n ≥ 1 , P = {P1, P2, . . . , Pm}. Given X ⊆ Z and cover

g : X → [m] of X, the entropy of g is Ent[g] = −
∑
i∈[m]

|g−1({i})|
|X| ln

(
|g−1({i})|
|X|

)
.

The goal is to find a cover g of Z of minimum entropy.

3 Minimum Entropy Submodular Set Cover: Definition,
Special cases and applications.

The following definition states the problem we are interested in this paper:

Definition 1. [Min-Entropy Submodular Set Cover] (MESSC): Given
a matroid M = (U, I) of rank N , find a basis B and a cover g of B minimizing
Ent[g].

MESSC indeed generalizes MESC: ifM is the transversal matroid of the bipartite
graph G = (U,P) naturally associated to instance X = (U,P) of MESC then
solving instance M of MESSC is equivalent to solving instance X of MESC.

Problem MESSC has applications to fuzzy set theory: a fuzzy measure (Cho-
quet capacity) is an extension of a probability measure. Submodular Choquet
capacities coincide with polymatroids. Various definitions of the notion of the
entropy of a Choquet capacity have been proposed in the literature. One such
definition, due to Dukhovny [9] is of special interest: for submodular capacities,
it is equivalent to our definition of minimum entropy cover (details will be given
in the journal version of the paper). Thus solving MESSC is equivalently stated
as computing the Dukhovny entropy of a submodular Choquet capacity.

Polymatroids are just a different name for concave games in theory of coop-
erative games [8]. If (M,P) is the rank representation of integer polymatroid f ,
then the convex hull of incidence vectors of bases in M (the matroid polytope)
coincides with the core of the cooperative game defined by f . Since entropy is
a concave function, its minimum over core(f) is obtained at a extremal point.
That is, finding a basis of minimum entropy is equivalent to finding a minimum
entropy imputation in the core. MESSC can, therefore, be restated as follows:

Definition 2. Given integer-valued polymatroid f , find a vector (x1, . . . , xm) of

nonnegative reals satisfying
m∑
i=1

xi = f([m]) and, for all S ⊆ [m],
∑
i∈S xi ≤

f([S]) minimizing the entropy of distribution xi

f([m]) .

We will freely switch between the two equivalent definitions of MESSC.
A class of matroids that yields a particular interesting class of cooperative

games is that of cycle matroids of a connected graph. We will call the cor-
responding particularization of MESSC the Minimum Entropy Spanning Tree
(MEST) problem; it can be specified as follows: we define a cover of a span-
ning tree T in a graph G as an orientation of its edges. The entropy of a
cover is the entropy of the distribution of indegrees. The objective is to find
a spanning tree T of G and a cover of T of minimum entropy. Intuitively in
MEST players correspond to graph nodes, each of which may contribute the
edges it is adjacent to, each at a unit cost. The submodular (cost) function is
f(S) = |{v ∈ V : v ∈ S or ∃w ∈ S, (v, w) ∈ E}| for S ⊆ V . The goal of the
players is to form a spanning tree with the contributed edges. We seek the “most
unfair” spanning tree.

Theorem 1. (proved in the full version [14]) Decision problem associated to
MEST is NP-hard.

Proof. We will use an idea related to the strategy employed to prove the NP-
completeness of the Minimum Labeling Spanning Tree Problem [?]. We will
provide a reduction from the NP-complete problem Minimum Entropy Set Cover
to MEST.

Indeed, let M = (U,P) be an instance of Minimum Entropy Set Cover prob-
lem, with U = {1, 2, . . . , n} and P = {P1, P2, . . . , Pm}.

Define a graph GM as follows:

1. GM has one super-node R, m+ n− 1 auxiliary nodes A1, . . . Am+n−1 (con-
nected only to R), m nodes corresponding to sets P1, P2, . . . , Pm and n nodes
corresponding to elements 1, 2, . . . n, respectively.

2. Nodes corresponding to Pi are connected to R and to nodes corresponding
to elements j, j ∈ Pi.

3. These are all edges of GM .

To relate the minimum entropy spanning tree on GM and the minimum cover
on M we need the following

Claim. Let 1 ≤ a ≤ b ≤ a+ b ≤W . Then

− a

W
log2(

a

W
)− b

W
log2(

b

W
) ≥ −a− 1

W
log2(

a− 1

W
)− b+ 1

W
log2(

b+ 1

W
).

Proof. This is equivalent to

a− 1

W
log2(

a

a− 1
) + log2(

a

W
) ≤ b

W
log2(

b+ 1

b
) + log2(

b+ 1

W
).

R

P1 P2
. . . Pm

x1 x2 x3 x4 x2 x3 x4 . . . xn

A1

A2

A3

...

Am+n−1

Fig. 1: Graph GM in the construction from Theorem 1

or

1

W
log2[(1 +

1

a− 1
)a−1] + log2(

a

W
) ≤ 1

W
log2[(1 +

1

b
)b] + log2(

b+ 1

W
).

This follows easy from the monotone increasing nature of function g(x) = (1 +
1
x)x. ut

So let us consider a spanning tree TM in GM of minimum entropy. TM has to
contain edges between R and Ai (as they are the unique edge containing vertex
Ai). Moreover, by a simple application of the claim, we may assume without loss
of generality that edge (T,Ai) in the minimum entropy solution is contributed
by vertex T , who has degree at least m + n − 1 from the auxiliary nodes only,
thus larger or equal to that of nodes P1, . . . , Pm, in the spanning tree TM .

Assume now, for the sake of contradiction, that some node Pi would be a node
unconnected to R in TM . Thus Pi is connected to some non-leaf node j. Deleting
edge Pi, j, adding edge R,Pi (contributed by R) and taking into account that
the degree of node j in TM is at most m we would get a tree of lower entropy.

The conclusion of this argument is that each node Pi is connected to R in
TM , with edge (R,Pi) contributed by R.

From this conclusion it follows easily that every node j is connected in TM
to at most one Pi (or else TM would have a cycle), thus corresponding to a cover

D in M . Moreover, to be a minimum entropy cover C of TM we may assume
that each such edge is contributed by node Pi.

To compute the entropy of cover C of TM we first consider the contribution
of node R, equal to

−2m+ n− 1

2(m+ n)
log2[

2m+ n− 1

2(m+ n)
]

Assuming node Pi has degree di in cover C, the contribution of such nodes to
the entropy of cover C is

−
m∑
i=1

di
2(m+ n)

log2

di
2(m+ n)

= − 1

2(m+ n)

[
m∑
i=1

di (log2 di − log2 2(m+ n))

]
=

= − 1

2(m+ n)

[
m∑
i=1

di log2(di)− n log2 2(m+ n)

]
=

=
n

2(m+ n)

[
−

m∑
i=1

di
n

log2

(
di
n

)]
+

n

2(m+ n)
log2

2(m+ n)

n
.

Thus

Ent(C) =− 2m+ n− 1

2(m+ n)
log2

2m+ n− 1

2(m+ n)
+

n

2(m+ n)
log2

2(m+ n)

n
+

+
n

2(m+ n)
· Ent(D),

in particular instance M has a cover of entropy at most λ if and only if instance GM
of MEST has a cover of entropy at most

−2m+ n− 1

2(m+ n)
log2

[
2m+ n− 1

2(m+ n)

]
+
n log2(2 + 2m/n)

2(m+ n)
+

n

2(m+ n)
· λ.

ut
Finally, we would like to mention a potential practical application of MESSC
to Web Search Diversification: Matroids are a natural way to encode diversity
in web search results [1]. One could formalize this by following special case of
MESSC, a generalization of MESC, called minimum entropy diverse multicover
(MEDM). We are given a bipartite graph of queries and pages, and integer k ≥ 1.
Each page p ∈ P has a type t(p) from a set of types T . We assume that each
query is adjacent to pages of at least k types. Feasible solutions are k-covers,
i.e. a set of edges covering the n queries, each query by exactly k pages (a top-k
answer) and all the types of pages that cover a given query are distinct. We seek
a partial cover with minimal entropy. A justification for this objective function
comes from adapting the maximum likelihood approach developed by Halperin
and Karp [12] for MESC to our problem.

3.1 The Greedy Algorithm.

We will denote by XOPT an optimal solution for an instance of MESSC. Also,
given a permutation σ ∈ Sm define vector Xσ as follows: for 1 ≤ i ≤ m,
Xσ(σ(i)) = f({σ(1), σ(2), . . . , σ(i)}) − f({σ(1), σ(2), . . . , σ(i − 1)}). It is easy

to see that for every σ ∈ Sm, Xσ is a feasible (but perhaps not optimal) solution
to instance f of MESSC, and that one of Xσ, σ ∈ Sn, is an optimal solution.
This is easy to see using the language of cooperative games: in concave games
the core is non-empty, a polytope whose extremal points are those produced
greedily on permutations of U , that is Xσ. Since entropy is a concave function,
the optimum is reached at some extremal point Xσ.

A GREEDY approximation algorithm is presented in Figure 2. Note that it
is well known that the resulting vector is also one of the vectors Xσ. We will use,
throughout the rest of the paper, the following notations: i1, i2, . . . , im will be
the indices chosen by the GREEDY algorithm, in this order. Furthermore, we
define for 1 ≤ r ≤ m the greedy rank function by rank(ir) = r. For 1 ≤ r ≤ m,
Wr = {i1, . . . , ir} is the set of first r elements added by the GREEDY algorithm;
also W0 = ∅. XGR

r = f(Wr)− f(Wr−1) is the increase in the objective function
caused by the choice of the r’th element.

GREEDY MESSC:

INPUT: An instance (U, f) of MESSC
S := ∅, r := 1
While S 6= U :

choose i ∈ U \ S that maximizes f(S ∪ {i})− f(S) (may be 0)
XGR
r := f(S ∪ {i})− f(S)

S := S ∪ {i}; r+=1
OUTPUT: Vector XGR = (XGR

r)r∈[m].

Fig. 2: Greedy algorithm for Minimum Entropy Submodular Set Cover.

4 Main result and definition of the covering coefficient α

By analogy with MESC, we would expect to upper bound the entropy of the
cover produced by the GREEDY algorithm by the entropy of the optimal cover
plus log2(e). We almost accomplish this: our upper bound further depends on a
covering constant α. It can be stated as follows:

Theorem 2. Given a polymatroid G = (U, f), the greedy algorithm produces a
solution XGR to the instance G of MESSC related to the optimal cover XOPT

by relation:

Ent[XGR] ≤ 1

α
· [Ent[XOPT] + log2(e)] + [1− 1

α
] log2(n) (1)

The rest of the section is devoted to precisely defining α. First we define a
quantity that will play a fundamental role in our results: for any 1 ≤ r, j ≤ m
let ajr = f(Wr) − f(Wr−1) − (f(Wr ∪ {j})− f(Wr−1 ∪ {j})) . The best way to
make sense of the (admittedly unintuitive) definition of the ajr coefficients is to
particularize them in the case of the set cover problem. In this case coefficients ajr

have a very intuitive description: they represent the size of the intersection of the
j’th set Pj to the r’th set in the GREEDY solution. Indeed, f(Wr) − f(Wr−1)
is the number of elements newly added by GREEDY at step r, whereas the
subtracted term f(Wr ∪ {j}) − f(Wr−1 ∪ {j}) is the number of elements that
would still be newly added if Pj were present too.

Proposition 2. For any 1 ≤ r, j ≤ m we have ajr ≥ 0.

When j ∈Wr this follows directly from the monotonicity of f. Assume now that
j /∈Wr, employ the submodularity of f with S = Wr, T = Wr−1 ∪ {j}. ut

To define covering coefficient α we introduce a large number of apparently
superfluous variables Zjr . Intuitively Zjr is the portion of optimal solution XOPT

j

that can be assigned to cover XGR
r . This explains the equations below: first,

one has to allocate all of XOPT
j and no more than that. Second, one cannot

allocate to any “set XGR
r ” more than “its intersection with XOPT

j ”. The quoted
statements above make full sense, of course, only for regular set cover.

Definition 3. Given polymatroid G, let α = αG the smallest positive value such
that there exist Zjr ∈ Z, Zjr ≥ 1 so that the following inequalities hold

m∑
r=1

Zjr = XOPT
j , 1 ≤ j ≤ m (2)

m∑
j=1

Zjr ≤ α ·XGR
r , 1 ≤ r ≤ m (3)

Given the discussion above, α is indeed a covering coefficient. It measures
the amount of “redundancy” inherent into ”assembling” the GREEDY solution
from pieces obtained by breaking up the optimal solution.

Proposition 3. The coefficient α is always greater or equal to 1.

Proof. Sum all equations (3) for all r = 1, . . . ,m. The left-hand side is
m∑
r=1

(
m∑
j=1

Zjr

)
=

m∑
j=1

(
m∑
r=1

Zjr

)
=
∑m
j=1X

OPT
j = N.

On the other hand the right-hand side is α·
m∑
r=1

XGR
r ≤ α·N, by the GREEDY

algorithm. The result follows. ut

5 Proof of main result.

By the greedy choice we infer XGR
r = f(Wr−1 ∪ {ir}) − f(Wr−1) for any 1 ≤

r ≤ m. We first prove several auxiliary results:

Claim. For any j ∈ [m] we have
m∑
r=1

ajr = f({j}).

Proof :

m∑
r=1

ajr =

m∑
r=1

(f(Wr)− f(Wr−1)− (f(Wr ∪ {j})− f(Wr−1 ∪ {j}))) =

f(Wm)− f(W0)− (f(Wm ∪ {j})− f(W0 ∪ {j})) = N − (N − f({j})) = f({j})

The computations are justified by equalities f(W0) = 0, f(Wm∪{j}) = f(Wm) =
N. ut

Claim. Given r, j ∈ [m] we have f({j})−
r∑

k=1

ajk = f(Wr ∪ {j})− f(Wr).

Proof :

r∑
k=1

ajk =

r∑
k=1

(
f(Wk)− f(Wk−1)−

(
f(Wk ∪ {j})− f(Wk−1 ∪ {j})

))
=

=

r∑
k=1

(f(Wk)− f(Wk−1))−
r∑

k=1

(f(Wk ∪ {j})− f(Wk−1 ∪ {j})) =

f(Wr)−f(W0)− (f(Wr ∪ {j})− f(W0 ∪ {j})) = f(Wr)−f(Wr∪{j})+f({j}).
ut

Claim. We have
m∏
r=1

(
XGR
r

)αXGR
r ≥

m∏
j=1

(
XOPT
j

)
!.

Proof: By the greedy choice, claims (5), (5) and Zjr ≤ ajr:

XGR
r = f(Wr−1 ∪ {ir})− f(Wr−1) ≥ f(Wr−1 ∪ {j})− f(Wr−1)

= f({j})−
r−1∑
k=1

ajk =

m∑
k=r

ajk ≥
m∑
k=r

Zjk = XOPT
j −

r−1∑
k=1

Zjk

Thus
m∏
j=1

(
m∏
r=1

(
XGR
r

)Zj
k

)
≥

m∏
j=1

 m∏
r=1

(
XOPT
j −

r−1∑
k=1

Zjk

)Zj
k

 ≥
m∏
j=1

(
XOPT
j

)
!

By (3):
m∏
j=1

(
m∏
r=1

(
XGR
r

)Zj
k

)
=

m∏
r=1

(
XGR
r

) m∑
j=1

Zj
k

≤
m∏
r=1

(
XGR
r

)αXGR
r . ut

With Claim (5) in hand, we get

ENT [XGR] = −
m∑
r=1

XGR
r

n
log2

(
XGR
r

n

)
= −

m∑
r=1

XGR
r

n
log2(XGR

r) + log2(n) =

= − 1

nα

m∑
r=1

log2

(
XGR
r

)αXGR
r + log2 n = − 1

nα
log2

m∏
r=1

(
XGR
r

)αXGR
r + log2 n ≤

=≤ − 1

nα
log2

∏
j∈OPT

(
XOPT
j

)
! + log2 n

Using inequality n! ≥
(
n
e

)n
we infer:

ENT[XGREEDY] ≤− 1

nα
log2

∏
j∈OPT

(
XOPT
j

e

)XOPT
j

+ log2 n =

− 1

nα

∑
j∈OPT

XOPT
j

(
log2X

OPT
j − log2 e

)
+ log2 n =

1

α

(
−

∑
j∈OPT

XOPT
j

n
log2X

OPT
j

)

+
1

α
log2 e+ log2 n =

1

α

(
−

∑
j∈OPT

Xj
n

log2

Xj
n
− log2 n

)
+

1

α
log2 e+ log2 n

=
1

α

(
ENT[XOPT] + log2 e

)
+

(
1− 1

α

)
log2 n

6 Applications: Special cases with α = 1.

A simple problem where one can determine the value of α is the Minimum Entropy
Orientation (MEO) problem [6, 7].The input to MEO is a graph G = (V,E). An
orientation of G is a function u : E → V such that for all e ∈ E, u(e) is one of the
vertices of e. The entropy of orientation u is defined in an obvious way, as the entropy
of the distribution of indegrees. The objective is to find an orientation u of G that
minimizes the entropy.

MEO is a special case of MESC: each instance G = (V,E) of MEO can be regarded
as an instance of MESC with submodular cost function f : V → Z, f(S) = |{e ∈
E : e ∩ S 6= ∅}|. We first recover (using a different method) the upper bound on the
performance of the GREEDY algorithm for MEO (an algorithm that is, however, not
optimal [6]).

Proposition 4. For any instance G of MEO αG = 1.

Proof. A simple application of the definition of f yields ajr = 1, if ir 6= j, (ir, j) ∈
E, j 6∈ Wr; a

j
r = XGR

r , if ir = j; ajr = 0, otherwise. This allows us to turn an ori-
entation of minimum entropy (corresponding to an optimal solution) into the greedy
orientation (and define coefficients Zjr) as follows:

– At each stage r, after choice of ir we reorient edges (j, ir), j 6∈ Wr that have
different orientations in the optimal and greedy solution. Correspondingly define
Zjr = 1 for such edges.

– Also let Zirr be the number of edges (j, ir) that are oriented towards ir in both the
greedy and the optimal orientation. Note that there are at most airr = XGR

r such
edges.

– Note that an edge that is reoriented at stage r is not reoriented again at a later
stage (because of the restriction j 6∈ Wr). Hence the process ends up with the

greedy solution. In other words
m∑
j=1

Zjr = XGR
r . (as we add one unit for each edge

counted by XGR
r).

ut
We can also rederive the results of Cardinal et al. on MESC using our approach:

Proposition 5. For any instance G of MESC αG = 1.

Proof. For MESC the submodular function is f(S) = | ∪i∈S Pi|, for S ⊆ [m]. By a
direct application of their definition ajr = |

(
Pir \ ∪r−1

k=1Pik
)
∩ Pj |.

Let u : [N] → [m] be an optimal solution to MESC, i.e. for any 1 ≤ i ≤ N ,
i ∈ Pu(i) and the cover specified by u has minimum entropy. Denote, for j = 1, . . . ,m,
Uj = {x ∈ [N] : u(x) = j}. Uj ⊆ Pj is the set of elements assigned by cover u to set
Pj . Define, for 1 ≤ r ≤ l

Zjr = |Uj ∩
(
Pir \ ∪

r−1
k=1Pik

)
|. (4)

Then 0 ≤ Zjr ≤ ajr. Moreover

l∑
r=1

Zjr =

l∑
r=1

|Uj ∩
(
Pir \ ∪

r−1
k=1Pik

)
| = |Uj |

m∑
j=1

Zjr =

m∑
j=1

|Uj ∩
(
Pir \ ∪

r−1
k=1Pik

)
| = |

(
Pir \ ∪

r−1
k=1Pik

)
|,

(as each of the two set systems (Uj)j∈[m] and
(
Pir \ ∪r−1

k=1Pik
)m
r=1

consists of disjoint

sets), hence Xj = |Uj | and Zjr satisfy conditions for α = 1. ut

7 Network flow interpretation of α and a multistage
approach.

Theorem 2 is, of course, most interesting when αG = 1, matching the log2(e) addi-
tive guarantee of MESC. However, there exist instances G of MESSC for which the
associated constant αG is strictly greater than 1.

To circumvent this problem we will develop a more powerful technique: we first
reinterpret constant αG using one-stage network flows. This will allow us to generalize
our method to multistage flows, characterized by a related constant βG. A variant of
Theorem 2 holds for constant βG as well. The extension allows us to prove that the
log2(e) additive guarantee is valid for all instances of MEST; the result follows from a
multistage flow construction witnessing that for any instance G of MEST βG = 1.

s

xm

...

x2

x1

yl

...

y2

y1

t s

xm

...

x2

x1

zs

...

z2

z1

yl

...

y2

y1

t

Fig. 3: (a). Network flow interpretation of constant α. (b) Multistage flow net-
work between solutions.

Example 1. For the MEST problem we have

f(Wr ∪ {j})− f(Wr−1 ∪ {j}) = |{e ∈ E(G) : e = (ir, k), k ∼ ir, k 6∼Wr−1 ∪ {j}}|

Similarly f(Wr)− f(Wr−1) = |{e ∈ E(G) : e = (ir, k), k ∼ ir, k 6∼Wr−1}|

Therefore ajr = 1 if ir 6= j, ir ∼ j, j 6∈ Wr; a
j
r = |{k : k ∼ ir, k ∼ j, k 6∼

Wr−1}| if ir 6= j, ir 6∼ j, j 6∈Wr; a
j
r = XGR

r if ir = j; and ajr = 0 otherwise.

Consider the flow network in Figure 3 (a). In addition to source/sink nodes s, t, F
has two layers of nodes; the first layer of nodes corresponding to the optimal solution,
the second layer of nodes corresponding to the greedy one. In each layer we have a
node for every player in the game. Edges appear between nodes of type k and ir, with
capacity equal to ark. The fact that the first layer of nodes corresponds to the optimal
solution is reflected by setting capacity XOPT

j on the edge between node s and node
j. Similarly, capacities between node ir of the second layer and node t are set to value
XGR
r . These values are seen as requests of node Yr that may be satisfied by the flow

(which in general might send an amount larger than XGR
r to this node)

It follows that αG = 1 amounts to the existence of an integer flow f of value N
in the flow network of Figure 3 (a) (that is, f satisfies the request of each node Yr
exactly). More generally, α is the minimum amount needed to multiply the capacities
on the edges entering t in order to accommodate a s− t integer flow with value N .

Our solution to problem MEO could be easily recast in terms of flows: we construct
the flow iteratively, by considering the paths between a node in the first layer and a
node in the second layer inductively, in an order determined first by the order of second-
layer nodes corresponding to the GREEDY algorithm and then going on nodes in the
first layer according to a fixed ordering.

There are lessons to be learned from the construction this flow and our proof of
Theorem 2: The key point was that when we had to reorient an edge towards a node in
the greedy solution, we could do so without overflowing this node. Similarly, the general
proof depended on the following the invariant we maintained (*): XGR

r ≥
∑l
k=r Z

j
k.

Condition (*) does not have a direct flow interpretation, since XGR
r is the request,

rather than the actual flow value at the given node. However, its relaxation involving α
does: the actual flow into node yr is at most αXGR

r , so requiring that the total flow into
node yr is at least

∑l
k=r Z

j
k guarantees the following relaxed version of equation (*):

α ·XGR
r ≥

∑l
k=r Z

j
k. We will see (in Proposition 3 below) that the relaxed condition

can be applied as well.
We generalize the setting of Theorem 2 by considering flow networks with q ≥ 1

levels (see Figure 3(b) for q = 2). The nodes in each level are ordered according to a
fixed ordering, e.g. the ordering induced by the GREEDY algorithm, with nodes not
chosen by this algorithm coming after all chosen nodes in a fixed, arbitrary sequence.
Capacities correspond either to values arj (if the chosen indices are j and ir, respec-
tively) or ∞, for edges between nodes with the same index j but on different levels.
Note that each path ending in a greedy node with index ir has finite capacity, at most
the capacity of its last edge. We use notation P : [j . . . k] to indicate the fact that path
P starts at node j on the first level and ends at node k on the last. Also write P ∼ v
to indicate the fact that path P is adjacent to node v. We will also need to consider a
total ordering < on paths (explicitly constructed when analyzing particular problems,
e.g. MEST):
Definition 4. A flow f is admissible with respect to total path ordering < if for any
path P between, say, node Xj and Yr, the remaining flow into node Xj just before path

P is considered is at most the final value of the final total flow into node Yr. Formally∑
Q∼Xj ,P≤Q f(Q) ≤

∑
W∼Yr

f(W).

Even in a multiple-layer flow network it may not be possible to obtain an admissible
flow of value N . As before, the solution is to multiply the capacities of edges into node
t by some fixed β ≥ 1.

Definition 5. Define βG as the infimum (over all multi-level flow networks corre-
sponding to the optimal and greedy solution) of all values β > 0 for which there exists
a path ordering < and a flow f admissible w.r.t. < such that for every pair of nodes j

and r,
∑
j

(∑
P :[j...ir]

fP
)
≤ β ·XGR

r . The reader is requested to compare Definitions 3

and this definition.

Similarly to the proof of Proposition 3, we obtain β = βG ≥ 1 always. On the
other hand, admissibility will guarantee in general only a weaker version of Theorem 2
(though no weaker for the main setting we have in mind, β = 1):

Theorem 3. Given an instance G = (N, f), of MESSC the greedy algorithm produces
a solution XGR satisfying β · Ent[XGR] ≤ Ent[XOPT] + log2(e) + β log2(β) + (β −
1) log2(n).

Proof. The proof is almost identical to that of Theorem 2: Let (Xi)i∈[m] an optimal
solution of the system from Figure (??) and (yi)i∈[m] the solution generated by the
greedy algorithm.

Consider a multi-layer flow network such that equation (??) is satisfied with β =
βG + ε, for some ε > 0. Let f be the corresponding admissible flow and define Zjr =∑
P :[j...ir]

fP .

Claim. We have
l∏

r=1

[(βG + ε) · yr](βG+ε)yr ≥
∏

j∈OPT

Xj !.

As flow f is admissible,

(βG + ε) · yr ≥
l∑

k=r

Zjk = Xj −
r−1∑
k=1

Zjk.

This follows from considering the situation just before setting the flow on the
lexicographically smallest path between node j and ir: Xj −

∑r−1
k=1 Z

j
k is the amount

of unsent flow at node j, to be sent on a path to one of nodes ir, . . . , il. No such path
has been considered yet, as they are lexicographically larger.

Therefore,

∏
j∈OPT

l∏
r=1

((βG + ε)yr)
Z

j
k ≥

∏
j∈OPT

 l∏
r=1

(
Xj −

r−1∑
k=1

Zjk

)Zj
k

 ≥
∏

j∈OPT

(Xj)!

On the other hand, by Definition (??)∏
j∈OPT

l∏
r=1

((βG + ε)yr)
Z

j
k =

l∏
r=1

(βG + ε)yr
∑

j Z
j
r ≤

l∏
r=1

((βG + ε)yr)
(βG+ε)yr .

ut
The rest of the computation is similar, except that we also have to take the limit

ε→ 0 in the end, to obtain the desired result.

8 Application to problem MEST.

Proposition 3 applies to problem MEST, yielding a nontrivial special case of MESSC
with the same additive constant as that of minimum entropy set cover:

Theorem 4. For any instance G of MEST, βG = 1. Therefore

Ent[XGR] ≤ Ent[XOPT] + log2(e).

Proof. We will create a flow, admissible with respect to some total path ordering <,
that will witness the fact that βG = 1. To do so we first revisit the GREEDY algorithm
for MEST (Example ??).

As discussed there, the GREEDY algorithm builds an “independent set” (forest, in
the particular case of MEST) incrementally: edges are only added, but not removed.
After some stage k, 1 ≤ k ≤ l the edges added by the GREEDY algorithm connect
nodes in Wk to some other nodes. Denote by δ(Wk) the set of nodes not in Wk but
adjacent to some node in Wk (after stage k).

Consider some stage r, 1 ≤ r ≤ l. Denote by C1, C2, . . . , Cp the connected compo-
nents (trees) created by the GREEDY algorithm after stage r − 1. Node ir chosen at
stage r will connect to some of its adjacent nodes (not already selected), so that the
resulted induced graph contains no cycles.

We infer the following:

– Any edge (ir, x), with x not in C1 ∪ C2 ∪ . . . ∪ Cp is added by the GREEDY
algorithm (charged to ir) at stage r.

– The GREEDY algorithm also adds some of the edges (ir, x), where x belongs to
a connected component among C1, C2, . . . , Cp. It can only add such an edge if ir
is not already connected to some node in that component (necessarily a member
of Wr−1), thus creating a cycle. More precisely, in this case it will add exactly one
edge for each such component it’s adjacent to, merging in effect these components.
Even in this case, note that x cannot belong to Wr−1, but to δ(Wr−1). Indeed,
suppose x were an element in Wr−1. Edge (ir, x) was not added when x was
considered because it was creating a cycle. But then adding it would create a cycle
now as well.

As a consequence of the previous analysis the following holds:

Lemma 2. Suppose edge (ir, x) is added by the GREEDY algorithm at stage r. Then

rank(x) > r,

where rank(x) is the GREEDY rank of the element x, the stage when the element x
was chosen.

Element x clearly cannot belong to Wr−1, if x falls in the first case of the previous
discussion. As for the second case, by the argument there x ∈ δ(Wr−1), which implies
the fact rank(x) > r. ut

We will also need a flow property that ensures flow admissibility in the particular
case of the MEST problem:

Definition 6. A flow is biased (with respect to vertex ordering r) if, for all nodes j, l

∃P : [j, l], fP > 0⇒ [rank(j) ≥ rank(l)]. (5)

ir

Wr−1

C1

C2

C3

Cp

x

Fig. 4: The GREEDY algorithm for MEST: at stage r, it adds edges from ir
to nodes in components C1, C3, Cp (merging them). It does not add an edge to
component C2, as there already existed a (shaded) edge from ir to a node in
C2 ∩Wr−1. It also adds edges (ir, x) to nodes x outside of C1, C2, . . . , Cp.

The importance of this notion lies in the fact that, while condition (5) is not
necessarily satisfied “between the endpoints” of a flow, biased flows can intuitively be
“composed”, as rank inequality is transitive.

Next we prove the following claim:

Lemma 3. Given an instance X of the MEST problem let XOPT and YGREEDY be
the vectors corresponding to the optimal and greedy solution, respectively, with elements
ordered according to the ordering induced by the greedy algorithm.

Then there exists a biased flow f with initial values XOPT and final values YGREEDY .

Let TOPT be the spanning tree (with oriented edges) corresponding to XOPT , and let
TGREEDY be the spanning tree with oriented edges corresponding to YGREEDY . We
will construct a multi-level flow network and a greedy flow in stages, corresponding to
edge moves that transform TOPT into TGREEDY . Flow values on some node v on an
intermediate level correspond to edges oriented towards v at that stage.

Allowed moves are of two basic types:

1. “Edge reversals”. Consider an edge e = (w1, w2) in the current tree, oriented
towards w2. We reorient edge e towards w1. Biased edge reversals are those with
rank(w1) < rank(w2).

2. “Rotations”. Consider an edge e = (w1, w2) in the current tree, oriented towards
w1, and let w3 be another vertex connected to w1, such that edge (w1, w3) is not
in the tree. Replace (w1, w2) by (w1, w3).

We will use, in fact, a third type, specified as follows, composed of the previous two
moves.

w1

w2

e

w1

w2

e

. .

. .

. .

.

. .

. .
.

. .

. .

. .

w2

w1

Fig. 5: Edge reversals and associated flow.

w1

w2

w3

w1

w2

w3
. .
. .
. .
. .

. .

. .

. .

. .

w1 w1

Fig. 6: Edge rotations and associated flow.

3. “Edge slidings”. Let a, b, c be three nodes Assume that edge (b, c) is in the
current tree (oriented towards b) and edge (a, b) is not. Replace edge (b, c) by edge
(a, b), oriented towards a by first doing a “rotation” (move of type 2) around node
b, and then reorienting edge (a, b) towards a (move of type 1). Biased edge slidings
are those corresponding to the case rank(a) < rank(b) < rank(c).

How do these moves correspond to flows ?

1. The edge reversal (w1, w2) corresponds (Figure 5) to one unit of flow from node
w2 to node w1 on the next level.

2. The rotation (w1, w2, w3) as described above corresponds (Figure 6) to one unit of
flow from node w1 to node w1 on the next level.

3. An edge sliding (Figure 7) involves using two levels of the flow network.

It is easy to see that flows associated to biased edge reversals and rotations, or to
preserving an edge (and its orientation) satisfy the biased flow condition. Hence (by
composability of biased flows) this holds for biased slidings as well.

It remains to show that we can transform TOPT to TGREEDY using biased moves
of type 1,2 and 3. The strategy comprises three parts, described by the following:

a

b

c

a

b

c

. . .

. . .

. . .

. .

. . .

. . .
.

. . .

. . .

. . .

b b

a

Fig. 7: Edge slidings and associated flow.

(a). Consider all edges e ∈ TOPT ∩ TGREEDY , oriented in the same way in both trees.
We need to do nothing about them.

(b). Consider all edges e = (a, b) ∈ TOPT ∩ TGREEDY , with opposite orientations in
the two trees. We will reorient them by an edge reversal.

(c). Consider all edges in TOPT \TGREEDY . We will iteratively replace such edges with
edges in TGREEDY \ TOPT , in a way such that the resulting intermediate graphs
are in fact trees.

The strategy for iterative replacement employs the current tree, denoted by T1.
Initially T1 = TOPT . Let us consider an edge e = (a, b) ∈ T1 \ TGREEDY . e is
in fact in TOPT \ TGREEDY , as edges added in the iterative process belong to
TGREEDY . Assume without loss of generality that rank(a) > rank(b). Since e ∈ E
and e 6∈ TGREEDY , a is connected to a node c with rank(c) < rank(b) in the same
component to b (thus creating a cycle that would preclude adding edge e). c is in
fact the neighbor of a on the unique path towards the root of TGREEDY .

Eliminating e from T1 breaks down the set of vertices into two disjoint connected
components S and T , with endpoints a, b into disjoint components. Together with
the edges of TGREEDY , edge e determines an unique cycle C, consisting of the
edges on the path from the root towards a and b, respectively, plus edge e. There
exists, therefore an edge e′ 6= e on this cycle C, whose endpoints are one in S and
one in T . We infer the fact that e′ ∈ TGREEDY \ T1.

If e′ is on the path from a to the root of TGREEDY then we can use slidings to
eliminate edge e from the tree and add edge e′ to the tree instead. We may also
need to perform the reversal of edge e before we can make the sliding (in case that
edge e is oriented towards b in TOPT). But since rank(c) < rank(b) all resulting
flows (including the one corresponding to reorienting edge e and then sliding it)
are biased.

If on the other hand e′ is on the path from b to the root of TGREEDY then we first
use a greedy edge reversal (possible, as rank(a) > rank(b)), then edge slidings
to replace e′ by e. In both cases, crucially all resulting flows (including the one
corresponding to reorienting edge e and then sliding it) are biased.

We only have to show that the resulting graph T ′1 = T1 \e+e′ is a tree (acyclic), so
that the invariant is respected. Indeed, e′ has its endpoints in S and T , respectively,

rootGreedy

c

b

a

e

e’
TS

Fig. 8: Iterative transformation of edges from TOPT \ TGREEDY into edges in
TGREEDY \ TOPT in Lemma 3. First the edge e is reoriented towards a. Then
we slide it into e′.

and is the unique edge of T ′1 with this property. Therefore it is part of no cycle in
T ′1. Since T1 was acyclic, T ′1 is acyclic too (hence a tree).

Each edge move of one of the three types above corresponds to a distinct path in
the flow network, described as follows:

(a). Edges e shared (with the same orientation, say towards node j) between TOPT and
TGREEDY correspond to paths between vertices with the same index j.

(b). Reorienting an edge e = (j, l) from j towards l corresponds to sending one unit of
flow from node j on the first level to node l on the next one, and then routing that
unit of flow across nodes with label l.

(c). Moves of type [c.] correspond to flows in a similar way, except that they might
involve multiple edges (to comply with capacity constraints), and thus multiple
nontrivial steps. As argued, though, above, all resulting flows are biased.

ut
We exemplify the transformation from the previous lemma in the example from

Figure 9. The graph G consists of three nodes, considered in the order rank(a) <
rank(b) < rank(c) by the GREEDY algorithm. To go from the optimal solution to the
greedy one we first reverse orientation on the edge (a,b). This corresponds to one unit
of flow from node b to node a (and subsequently being routed to nodes labeled a). The
second transformation consists of first performing an edge reversal on edge (b, c) and
then sliding edge (b, c) towards a. The associated flow goes from b to a, going through
nodes labeled c, exemplifying the fact that the biased condition is only valid at the
extremities of the flow.

Definition 7. Let < be any total path ordering such that:

1. All paths (j, s), j 6= s come before all paths of type (p, p).
2. Among paths of the first type Pi = (ji, li), i = 1, 2, l1 < l2 ⇒ P1 < P2.

Lemma 4. The flow f constructed in the proof of Lemma 3 is admissible with respect
to <.

b

a

c

OPT

b

a

c

b

a

c

b

a

c

GREEDY

a a a a

b b b b
c c c c

Fig. 9: (a). Transfoming the greedy to the optimal solution using the moves from
Lemma 3. (b). The associated biased flow.

Consider a path P between nodes j and im, such that f(P) > 0. There are two cases:
Case 1: j 6= im.
Then, by the biased nature of the flow, j 6∈ Wm−1, that is node j is a candidate for
the greedy algorithm at stage m. Since im was chosen instead, the number of edges
that would be oriented towards j, should it be chosen at stage m, is less or equal to
the number of edges oriented towards im at that stage. The second quantity is (by the
definition of the GREEDY algorithm) nothing but Yim .

To interpret the first quantity, we will associate edges in TOPT \TGREEDY to paths
of unit flow starting from j, in such a way that all edges mapped to some path Q,
P ≤ Q, could be oriented towards j should this node be chosen at stage m.

First, note that every possible edge (j, l) with l ∈Wm−1, oriented towards j in the
spanning tree TOPT is either present in TGREEDY (but necessarily oriented towards l)
or has been replaced (using the process of step [c]) by an edge rooted at some vertex
v of even lower rank than l. Thus the edge corresponds to a one unit of flow on some
path Q between j and l (or v), a path that is lexicographically smaller than P .

Similarly, if l is not itself in Wm−1 but is in δ(Wm−1), and j is connected to a node
in the same connected component as l (after step m− 1 of the GREEDY algorithm) ,
then edge (j, l) cannot be in TGREEDY , under any orientation (or else it would create
a cycle C). When considered by the GREEDY algorithm it is swapped under step [c.].
Note that cycle C (except edge (j, l)) is contained in Wm−1∪δ(Wm−1), with every edge
in this cycle being assigned to a vertex in Wm−1. Hence the edge also corresponds to a
one unit of flow on some path Q between j and l (or v), a path that is lexicographically
smaller than P .

Thus any unit of flow from node j sent on a path that is scheduled after path
P corresponds to some edge (j, l) not covered by one of the previous two cases. All
remaining such edges are among those available for j at stage m, were it to be chosen
by the GREEDY algorithm. Their number is, as we saw, at most Yim , the flow into im
in the GREEDY solution.
Case 2: j = im.
This is trivial, as P is the only path leaving node j at this stage (and is among those
that arrive at j).

Hence the flow is admissible. ut
To complete the proof of Theorem 4, we simply apply Proposition 3.

ut
We conjecture that a similar result holds for problem MEDM, and that it can be

proved using multilevel flows (single level ones do not seem powerful enough).

9 Conclusions and open problems

The most important open question raised by our work is whether log2(e) is an additive
approximation guarantee for all instances of MESSC. A deeper matroid-theoretic study
of MESSC would be useful in this respect. Finding the optimal additive approximation
guarantee for MEST is an open problem as well.

Second, a problem in information theory called minimum entropy coupling [16]
problem led us to consider an extension of the framework from this paper to string
submodular functions. Various game-theoretic variations on “worst-case fairness” are
an interesting topic for further study, given the large variety of interesting combinatorial
games [3].

Finally, we believe that problem MESSC has many potential practical applications,
including the outlined applications to diversifying web search results. It would be quite
interesting to study more realistic version of problem MEDM and, more generally, to
develop such applications.

Bibliography

[1] Z. Abbassi, V. Mirrokni and M. Thakur. Diversity Maximization under Matroid
Constraints. In Proceedings of the 19th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD’2013), pp. 32–40, ACM.

[2] N. Alon and A. Orlitsky. Source coding and graph entropies. IEEE Trans. Inform.
Theory, vol.42(5), pp. 1329 – 1339, 1996.

[3] J.M. Bilbao. Cooperative Games on Combinatorial Structures. Kluwer, 2000.

[4] C. Bonchiş and G. Istrate. A parametric worst-case approach to fairness in TU-
Cooperative Games. arXiv.org:1208.0283. Revised version forthcoming.

[5] J. Cardinal, S. Fiorini, and G. Joret. Tight results on minimum entropy set cover.
Algorithmica, 51(1):49–60, 2008.

[6] J. Cardinal, S. Fiorini, and G. Joret. Minimum entropy orientations. Operations
Research Letters, 36(6):680–683, 2008.

[7] J. Cardinal, S. Fiorini, and G. Joret. Minimum entropy combinatorial optimization
problems. Theory of Computing Systems, 51(1):4–21, 2012.

[8] T. Driessen. Cooperative Games, Solutions and Applications. Kluwer, 1988.‘

[9] Alexander Dukhovny. General entropy of general measures. International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(03):213–225, 2002.

[10] S. Fujishige. Submodular functions and optimization. Elsevier, 2005.

[11] T. Fujito. Approximation algorithms for submodular set cover with applications.
IEICE Transactions on Information and Systems, E83-D(3):480–487, 2000.

[12] E. Halperin and R. Karp. The minimum entropy set cover problem. Theoretical
Computer Science, 348(2–3):340–350, 2005.

[13] S. Iwata and J.B. Orlin. A simple combinatorial algorithm for submodular function
minimization. In Proceedings of the 20th SODA, pp. 1230–1237.

[14] G. Istrate, C. Bonchiş and L.P. Dinu. The Minimum Entropy Submod-
ular Set Cover Problem. Manuscript, available at http://tcs.ieat.ro/wp-
content/uploads/2015/10/lata.pdf

[15] G.Jajamovich, X. Wang. Maximum-parsimony haplotype inference based on
sparse representations of genotypes. IEEE Trans. Sign. Proc., 60:2013–2023, 2012.

[16] M. Kovačević, I. Stanojević, and V. Šenk. On the entropy of couplings. Informa-
tion and Computation, 242:369–382, 2015.

[17] M. Madiman and P. Tetali. Information inequalities for joint distributions, with
interpretations and applications. IEEE Trans. Inf. Theory, 56(6):2699–2713, 2010.

[18] J.G. Oxley. Matroid theory, volume 3. Oxford University Press, 2006.

[19] A. Schrijver. A combinatorial algorithm minimizing submodular functions in
strongly polynomial time. J. Combinatorial Theory, Series B, 80(2):346–355, 2000.

[20] L. Shapley. Cores of convex games. Int. J. Game Theory, 1(1):11–26, 1971.

[21] B. Wang. Minimum entropy approach to word segmentation problems. Physica
A: Statistical Mechanics and its Applications, 293(3):583–591, 2001.

[22] L. Wolsey. An analysis of the greedy algorithm for the submodular set covering
problem. Combinatorica, 2:385–393, 1982.

	The Minimum Entropy Submodular Set Cover Problem (extended abstract)
	Gabriel Istrate cl@@auth, and Cosmin Bonchis cl@@auth, and Liviu P. Dinu

