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West University of Timişoara and e-Austria Research Institute, Timişoara, Romania
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1 Motivation: Heapability of integer sequences.

Byers, Heeringa, Mitzenmacher, Zervas (ANALCO’2011): Sequence of integers A is heapable if it can be inserted
into binary heap-ordered tree (not necessarily complete) as leaves only.

• Polynomial time algorithm to decide heapability.
• Complete heapability NP-complete.
• If π ∈ Sn is a random permutation, w.h.p. LHS(π) = n− o(n).

2 Slots

•A node comes with two slots of the same value
• Slots may be occupied by larger numbers.
• If A = (e.g.) 1 3 2 6 5 4 then a free slot is always available, and the sequence is heapable.
• If A = (e.g.) 5 1 . . . then there is no good slot for 1.

3 Decomposition into heapable subsequences via Patience Heaping.
MHSk(A) = minimum number of k-ary heapable sequences one can decompose A into.

Algorithm 3.1: PATIENCE-HEAPING(W )

INPUT W = (w1, w2, . . . , wn) a list of integers.
Start with empty heap forest T = ∅.
for i in range(n):

if (there exists a slot where Xi can be inserted):
insert Xi in the slot with the lowest value.

else :
start a new heap consisting of Xi only.

THEOREM [3]: "Patience heaping" computes MHSk(A).

Proof Idea: (a). Define domination relation between multisets of slots. (b). Greedy insertion dominates any
other insertion+ induction. If GREEDY creates new heap then any other algorithm does.

4 Extensions to Intervals/Partial orders of Finite Dimension.

Theorem [5]): PatienceHeaping still computes the decomposition of a sequence of intervals into a minimal
number of heaps.

Proof Idea: Slot value of an interval: larger end.

• Longest increasing subequence of intervals: greedy.

• Justicz, Scheinerman, Winkler (AMM 1990): random intervals on [0,1]. E[LIS(π)] ∼ 2
√
n√
π
.

•Width: the minimum # chains in a chain decomposition. Dilworth’s Thm: w(P ) = size of largest antichain.
• height: the length of the longest chain.
•Dimension: the minimum number of permutations P1, P2, . . . , Pk s.t. P = P1 ∩ P2 ∩ . . . Pk.
• Random p.orders of dimension k: Pk(n) (Winkler, 1985). Random permutations: k = 2.

•Width of random P ∈ Pk(n): Θ(n1/k), Winkler (1985), Brightwell (1992).
•Height of random π ∈ Pk(n): Winkler(1985), Bollobás and Brightwell (1992).

THEOREM [4]: The following IP for MHSk(P ) has a totally unimodular matrix:

max(
∑
p≺q

Xp,q)∑
q:p≺q

Xp,q ≤ k,∀p ∈ P∑
p:p≺q

Xp,q ≤ 1,∀q ∈ P

Xp,q ∈ {0, 1}

Proof: if 1 instead of k on the right-hand side, IP for maximum matching in bipartite graph.

THEOREM [4]: For every fixed k, d ≥ 1, EP∈Pd,n[MHSk(P )] = Ω(logd−1(n)).
Proof Idea: Sequence minima start new heaps. Expected # minima analyzed by Winkler (1988).

5 Longest Heapable Subsequence

Complexity: open [2]

THEOREM [4]: For every fixed k, d ≥ 1, EP∈Pd,n[LHS(P )] = n− o(n).
Proof Idea: Straightforward adaptation of argument from [2].

6 Scaling of E[MHS2(π)]: random permutations and random intervals.

CONJECTURE: We have limn→∞
E[MHS2[π]]

ln(n)
= φ, with φ = 1+

√
5

2 the golden ratio.

Note: Basdevant et al. [1] believe constant is slightly smaller.

Empirically E[MHS2(P )] ∼ n
3 !

102 103

size

0

20

40

60

80

100

120

140

160

av
er

ag
e 

n
u
m

b
er

 o
f 

h
ea

p
s

k=2

k=1

102
6

7

8

9

10

11

12

13

Case k=2 (zoom in)

2

21 22

211 220 212 212 221 222

7 "Physics like argument" via a Multiset Hammersley Process.

Hammersley’s process with k ≥ 1 lives: particles arrive as random points in [0,1]. Each endowed with k
lives. A new particle p takes one life from closest q < p.

• Live particles correspond to slots in Patience Heaping.

•New heaps: # of heaps = # of (local) maxima.

•Words over alphabet 0, 1, 2.

• Start with W0 = λ.

• Choose random position. Put there a 2. Remove 1 from the closest nonzero digit to the right (if any).

INTUITION: Process "converges to" a compound Poisson Process with densities d0 = d2 ∼ 3−
√

5
2 ∼

0.381 . . ., d1 ∼
√

5− 2 ∼ 0.236 . . ..

Scaling: # minima in this limit process.

Assuming existence of constants and well-mixing, "mean-field" flow equations:

d2 = 1− d2

d1 + d2
, d1 =

d2 − d1

d1 + d2
, d0 + d1 + d2 = 1.

yield promised values for parameters of compound Poisson process.

8 ... and for intervals
New version of Hammesley process with k lifelines: new particle= random interval In = [xn, yn]. xn kills lowest
particle, but yn is the new particle !

Limit of Hammersley process: far from Poisson jump process !
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