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ABSTRACT

We study the problem of analyzing the expected running time of WalkSAT, a local
search procedure for satisfiability problem, on instances of the k-XOR SAT problem. We
obtain upper bounds on this expected running time by reducing the problem to settings
amenable to classical techniques from drift analysis. A crucial ingredient of this reduction
is the definition of hypergraph versions of interacting particle systems and random walks,
notably generalizations of coalescing and annihilating random walks. The use of such
models allows to show that the nature of the expected running time of WalkSAT depends
on a structural parameter (we call odd Cheeger time) of the dual of the formula hypergraph.
c© 2015 John Wiley & Sons, Inc.

1. INTRODUCTION

Interacting particle systems are discrete dynamical systems, usually defined on lat-
tices, studied intensely in Mathematical Physics [Lig04]. They can be investigated
on finite graphs as well [DW83],[DW84], [Ald13] as finite Markov chains, and cor-
respond via duality to certain types of random walks [AF14]. The analysis of these
models can sometimes be used to bound the mixing time of certain Markov chains,
e.g. (hyper)graph coloring procedures [DW84, CT13].
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A recent development in interacting particle systems and random walks is the
extension of these theories to hypergraphs [LP12, CD12, CT13, CFR13, ALL14]
and simplicial complexes [SKM14, PRT15]. We contribute to this direction by
studying hypergraph analogues of coalescing/annihilating random walks and the
voter model.

Besides the obvious fundamental interest of such a generalization, the models
we consider arose naturally from an application, the analysis of a local search
procedure called WalkSAT for solving instances of the satisfiability problem, in the
special case of the so-called XOR-SAT version of SAT. It has other applications,
unrelated at first sight to the first one: the theory of social balance [AKR06] and
that of lights-out games [Sch14]. On the other hand the study of these systems,
though it preserves some properties from the graph case has additional interesting
features: for instance for so-called annihilating random walks on hypergraphs the
number of particles is not in general nondecreasing (as it is in the graph case) and
the structure of recurrent states is interestingly constrained by systems of linear
equations similar to the ones used to analyze lights-out games [Sch14]. On the
other hand, in coalescing random walks on hypergraphs there may be more than
one copy of an initial ”ball” and the process is naturally described using multisets
rather than sets of balls.

The plan of the paper is as follows: first we define the models we are interested
in and outline their motivation. In Section B. we present the (still open in general)
issue of reachability and recurrence for annihilating random walks, together with a
result settling this for our intended applications. In such a setting, our main result
(Theorem 5.1 in Section 5.) upper bounds expected annihilation time in terms of a
Cheeger-like constant of the hypergraph. We conclude with an application of this
result to the analysis of the running time of the WalkSAT algorithm on instances
of k-XOR-SAT and other (brief) remarks.

2. PRELIMINARIES

Hypergraphs considered in this paper are simple: for every two hyperedges e, f ,
|e ∩ f | ≤ 1. On the other hand we will allow self-loops, i.e. hyperedges e with
|e| = 1. We will even allow multiple self-loops to the same vertex. A multiset is a
set whose elements have a (positive) multiplicity. The disjoint union of multisets
A and B, denoted A tB, is the multiset that adds up multiplicities of an element
in A and B.

Given hypergraph H = (V,E) and v ∈ V we will denote by N(v) its open
neighborhood, defined as the set {w 6= v ∈ V : (∃e ∈ E), {v, w} ⊆ E} and by
N [v] = {v} ∪N(v) its closed neigborhood.

A. Setting and Related Work

In this paper we are concerned with a version of satisfiability called k-XORSAT:

Definition. Given constant k ≥ 2, an instance of k-XORSAT is a linear system
of equations A · −→x =

−→
b over boolean field Z2, where A is an m × n matrix, for

some m,n ≥ 1, −→x = (x1, x2, . . . , xn)T is an n× 1 vector,
−→
b = (b1, b2, . . . , bm)T is

an m× 1 vector, and each equation has exactly k variables.
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Though k-XORSAT can be solved in polynomial time by Gaussian elimination,
we will not be concerned with this algorithm. Instead we aim to analyze a local
search procedure, the WalkSAT algorithm [Pap91], displayed in Figure 2..1 and
originally investigated on random instances of k-SAT. Though possible in principle
in several cases (e.g. [Sch99],[ABS06], [COFF+09], [COF14], [Zho13]) and well-
understood from the standpoint of Statistical Mechanics [SM03, SM04], such an
analysis is still quite complicated in general.

Here we trade off the difficulty of studying WalkSAT on random instances of
k-SAT for the simpler problem k-XORSAT. While the study of such a scenario on
random instances is still interesting [BHW03, SM03, AMZ08], interestingly, we ob-
tain rigorous upper bounds on the expected running time of WalkSAT on individual
solvable instances in terms of measurable parameters of these individual instances.

Algorithm 2..1: Algorithm WalkSAT(Φ)

Start with an arbitrary assignment U
while (there exists some unsatisfied clause)

pick a random unsatisfied clause C
change the value of a random variable of C in U.

return assignment U.

A second motivation comes from the physics of complex systems and is given by
the following dynamics, first investigated by Antal, Krapivsky and Redner:

Definition. Constrained Triadic Dynamics[AKR06, Ist09]. We start with
a graph G = (V,E) whose edges are labeled 0/1. A triangle T is G is called balanced
if the sum of the labels of its edges is 0 (modulo 2). At any step t, we chose an
imbalanced triangle T uniformly at random and we change the sign of a random edge
of T (thus making T balanced). The move might, however, make other triangles
unbalanced.

CTD can be modeled by the WalkSAT algorithm on an instance of 3-XORSAT
[RVYMO06]. As further shown in [Ist09], one can sometimes analyze CTD using
duality.

3. MOTIVATING EXAMPLE: THE CASE OF A
COMPLETE 5-UNIFORM LINEAR SYSTEM.

To motivate some of the concepts we introduce, in this section we study a particular
instance of our problem, the complete 5-uniform linear system, defined as follows:

Definition. Let n ≥ 5 and let Z ∈ {0, 1}n be a boolean vector. The com-
plete 5-uniform linear system K5(Z) is the linear system with n boolean variables
X1, X2, . . . , Xn and equations ∑

i∈A
Xi =

∑
i∈A

Zi

where A ranges over all 5-element subsets of {1, 2, . . . , n}.
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By design K5(Z) has Z among the solutions. The following is an easy observa-
tion:

Lemma 3.1. Z is the only solution of K5(Z).
Proof. Subtracting two equations we infer Xi −Xj = Zi − Zj for all 1 ≤ i, j ≤ n.
Thus the values of all variables are determined by the value of X1.

When X1 = Z1 we obtain solution Z. The alternative X1 = Z1 + 1 does not
lead to a solution, because it corresponds to flipping all bits in Z1, which is not a
solution of the system (as all equations have odd width).

From Lemma 3.1 to any assignment Ut considered at step t by WalkSAT one
can associate a partition (At, At) of the variables {X1, X2, . . . , Xn} with

At = {Xi : Ut(Xi) 6= Zi}, the set of ”bad variables”.)

Eventually, with probability 1 − o(1), we will have At = ∅ (that is WalkSAT will
find assignment Z). This holds in the general setting of a satisfiable system:

Theorem 3.2. Let Φ be a satisfiable instance of k-XOR-SAT. Let X0 be an arbi-
trary assignment. Then a satisfying assignment X2 for Φ is reachable from initial
assignment X1 by means of moves of the WalkSAT algorithm.

Equivalently, by duality: let w0 be the configuration in the hypergraph D(Φ) cor-
responding to X0 and let w2 be the ”all-zeros” configuration. Then w2 is reachable
from w0.
Proof. Let X0 be an initial assignment. We will prove that a solution of the system
is reachable from X0 by induction on k, the Hamming distance between X0 and
solutions of the system A · x = b (we will assume that vector X is such a solution
with dH(X0, X) = k).

• Case k = 0. Then X0 = X and there is nothing to prove.

• Case k = 1. Then X0 and X differ on a single variable z. Let w be an
equation containing z. Then X0 does not satisfy w (as X, which only differs
on z, does). Choosing equation w and variable z we reach X from X0.

• Case k ≥ 2. If there is an equation w not satisfied by X0 (but satisfied by
X) then w must contain a variable on which X0 and X differ. Let z be such
a variable. Then by flipping z one can reach from X0 an assignment X1 at
Hamming distance k−1 from X. Now it is easily seen that system H(X1, X)
has solutions: any solution of H(X0, X) with the value of z flipped. By the
induction hypothesis one can reach a solution from X1, therefore from X0.

We analyze the WalkSAT algorithm on K5(Z) by investigating the dynamics of
the potential function H(t) = |At|. Eventually w.h.p. H(t) = 0, and we would like
to investigate the expected hitting time of function H(t).

WalkSAT evolves by flipping the value of a single variable. Therefore Ht can
either decrease by 1 (if one ”bad” variable becomes ”good”) or increase by one (if
one ”good” variables flips to ”bad”). The following easy observation is crucial:
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Lemma 3.3. For every t ≥ 0 an equation e is not satisfied by assignment Ut if
and only if

|V ar(e) ∩At| is odd.

This lemma motivates the following ”exotic” notion of ”odd cut” in a hypergraph:

Definition. Given hypergraph H and cut A,A define

- OddCut(A,A) to be the subhypergraph of H induced by edges e such that
|e ∩A| is odd.

- E−(A,A) to be the set of pairs (v, e) with v ∈ A and e 3 v, e ∈ OddCut(A,A).
- E+(A,A) to be the set of pairs (w, e) with w ∈ A and e 3 w, e ∈ OddCut(A,A).

Remark. In the definition of E− we may allow (odd-size) edges that do not
contain a single vertex from A ! For instance an edge of odd size all whose vertices
are in A counts as an edge crossing the cut.

The connection between these notions and the analysis of WalkSAT is clear:
∆H(t) = −1, precisely when at step t the chosen pair (v, e) belongs to E−(At, At.
Similarly, ∆H(t) = −1, precisely when at step t the chosen pair (v, e) belongs to
E−(At, At).

Definition. For a hypergraph H and set A ⊆ V (H) define the odd Cheeger drift
Dodd(A) as

Dodd(A) =
|E+(A,A)| − |E−(A,A)|
|E+(A,A)|+ |E−(A,A)| ,

Note that the odd Cheeger drift Dodd(A) is only well-defined for sets A such that
OddCut(A) 6= ∅.

The characterization of all hypergraphs for which OddCut(A) 6= ∅ is related to
existing concepts concepts related to parity domination in graphs [Sut89, AS92]:

Definition. Given graph G = (V,E), set of vertices ∅ 6= A ⊆ V is (closed) even
dominating in G if for every v ∈ V , |A ∩N [v]| is even.

The adaptation to hypergraphs is as follows:

Definition. Given hypergraph H = (V,E), set of vertices ∅ 6= A ⊆ V is even
parity dominating in H if for every e ∈ E, |A ∩ e| is even.

The previous adaptation does not directly extend to hypergraphs the usual defi-
nition of parity dominating set in graphs [AS92]. Instead, to any graph G = (V,E)
one can associate its neighborhood hypergraph N(G) = (VN , EN ) whose vertices are
those in V (i.e. VN = V ), and whose hyperedges correspond to closed neighbor-
hoods of vertices in V . In other words

(e ∈ EN )⇐⇒ (∃v ∈ V : e = N [v])

One can easily verify that a set of vertices in a graph G is even closed parity
dominating if and only if it is even parity dominating in N(G) (in the sense of the
previous definition).



6 G. ISTRATE, M. MARIN, C. BONCHIŞ

The introduced terminology allows us to characterize hypergraphs H such that
Dodd(A) is well-defined for all ∅ 6= A 6= V by the absence of an even dominating set
in H.

Definition. We will call connected hypergraph H odd connected if it has no
even dominating independent set.

We now return to the odd Cheeger drift, presenting a couple of examples:

Example 1. For every regular graph G, the odd Cheeger drift of an arbitrary set
A is zero, as |E+(A,A)| = |E−(A,A)| for all A.

Example 2. Let H = Kn,5 be the complete 5-uniform hypergraph with n vertices.
Then the odd Cheeger drift of arbitrary low-density subsets of H will be negative
(for large values of n). Indeed, if |A| = δn, the number of hyperedges containing

- five vertices in A is
(
δn
5

)
∼ δ5

5! n
5. Each vertex will count for E−(A,A).

- three vertices in A is
(
δn
3

)(
(1−δ)n

2

)
∼ n5δ3(1 − δ)2/12. These three vertices

will count for E−(A,A), the other two for E+(A,A).

- exactly one vertex in A is δn
(

(1−δ)n
4

)
∼ n5δ(1−δ)4/24. This vertex will count

for E−(A,A), all the rest for E+(A,A).

Thus

|E−(A,A)| ∼ n5[
δ5

24
+ 3

δ3 · (1− δ)2

12
+
δ(1− δ)4

24
]

On the other hand

|E+(A,A)| ∼ n5[2
δ3(1− δ)2

24
+ 4

δ(1− δ)4

24
]

”Drift” quantity Dodd(δ) = |E−(A,A)|−|E+(A,A)|
|E−(A,A)|+|E+(A,A)|

∼ δ5+4δ3(1−δ)2−3δ(1−δ)4
δ5+8δ3(1−δ)2+5δ(1−δ)4 is plotted

against density parameter δ in Figure 1.

The analysis of Example 3. allows us to finally settle the problem investigated
in this section:

Theorem 3.4. The expected convergence time of WalkSAT on system K5(Z) is
exponential in n.
Proof. A consequence of drift analysis. Formally, one can take n large enough
such that −1 < Dodd(A) < −0.1 for all A with 0.1n < |A| < 0.2n. We then apply
the Simplified Drift Theorem from [OW08] and infer that there exists constants
c > 1 > d > 0 such that

Pr[T < cn] < dn

Therefore the expected time to hit zero is at least cn(1− dn).

Remark. It is easily seen that in fact the theorem remains true for every system
A such that

- A has an unique solution.
- There exist constants 0 < η1 < η2 < 1/2 and ε > 0 such that for every set
A ⊂ V with η1n < |A| < η2n, Dodd(A) < −ε.
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Fig. 1. The (asymptotic) odd Cheeger drift of the complete 5-uniform hypergraph Kn,5.

4. AN ANALYSIS OF THE GENERAL CASE VIA HYPERGRAPH
DUALITY.

The previous section showed the relevance of concepts such as odd cuts and odd
Cheeger drift in the analysis of the performance of algorithm WalkSAT.

A difficulty in extending the analysis to a general case is the lack of a good analog
of the progress measure H(t): when the system has multiple solutions the set of
variables can no longer be partitioned into good and bad. Such a formula may
still have a backbone or spine but frequently [IKKM12, AM15] the formula may
have ”minibackbones” corresponding to local clusters of solutions, but whose values
differ between the exponentially many different clusters. Also, some variables may
be outside the 2-core of the formula hypergraph, playing no role in its satisfiability,
but be dependent on the variables in the 2-core (and possibly important in the
dynamics of WalkSAT).

In the sequel we will take a different route: rather than concentrating on variable-
based measures we will instead use clause-based measure. To this end we will analyze
the dynamics of H(t) the number of clause left unsatisfied by assignment Ut. Such
an analysis will require us to consider structural properties of the dual of the formula
hypergraph:

Definition. Given instance Φ of k-XORSAT, the dual D(Φ) of Φ is an undi-
rected hypergraph with self-loops D(Φ) = (V ,E) defined as follows: V is the set
of equations of Φ. Hyperedges in D(Φ) correspond to variables in Φ and connect
all equations containing a given variable. In particular we add a self-loop to an
equation (vertex) v if it contains a variable appearing only in v. We may even add
multiple self-loops to the same vertex.

In other words D(Φ) is simply the dual of the formula hypergraph of Φ.
Note that if Φ is an instance of k-XORSAT then D(Φ) is a k-regular hyper-

graph (i.e. every vertex has degree exactly k).
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Definition. For any instance Φ of k-XORSAT let Z be an initial assignment to
the variables of Φ. Let CZ be the configuration of DΦ defined as follows: a vertex v
of CZ has label 1 in CZ if and only if the corresponding equation is satisfied by Z.
CZ will be called the configuration dual to assignment Z.

We aim to upper bound the convergence time of WalkSAT on formula Φ in terms
of Cheeger-like quantities of the dual hypergraph D(Φ). Obtaining such an analysis
will turn out to require hypergraph analogues of annihilating and coalescing random
walks, as well as of the voter model. Unlike their graph counterparts, and unlike
the ordinary variants of random walks on hypergraphs [CFR13] or the recently
defined s-walks [LP12], these models will be explosive: the number of ”particles”
may increase at a given step and be (in the case of coalescing random walk and voter
model) unbounded. Such properties makes these models fundamentally different
from their counterparts in the graph case.

A. Explosive random walks on hypergraphs

Motivating such explosive models starts by translating by duality the WalkSAT
algorithm, performed as follows:

Proposition 4.1. For any instance Φ of k-XORSAT let X0 be an initial assign-
ment to the variables of Φ. Let C0 be the configuration dual to X0.

Suppose the algorithm WalkSAT on Φ with initial assignment X0 changes vari-
able x in (unsatisfied) clause C, resulting in assignment X1. Then the dual config-
uration of X1 in DΦ is obtained by flipping the values of nodes in hyperedge x of
DΦ which contains node C whose initial value was 1.
Proof. By changing the value of variable x any equation that contains x and was
satisfied by X0 becomes unsatisfied by X1 and viceversa. On the dual this reads
as follows: every vertex of the hyperedge that corresponds to variable v changes
value.

This motivates the following definition:

Definition. Let H = (V,E) be a connected hypergraph. Define an annihilating
random walk on H (Figure A.) by the following:

(a). Initial state: Initially: Ai ∈ {0, 1}. We will identify this configuration with
B the set of vertices i ∈ V with Ai = 1, and call such a vertex i live.

(b). Moves: Choose pair i, e consisting of a random live node i and a random
hyperedge e = (i, j1, . . . , jk) containing i. Simultaneously set Av = Av ⊕ Ai
for all v ∈ e (including v = i, which will result in Ai = 0).

It will be, however, more convenient to analyze annihilating random walks on
k-uniform hypergraphs with two additional changes:

(a). first, we will study the lazy version of a.r.w., the one in which the choice of
node i is not restricted to live nodes only.

(b). second, we will study annihilating random walks in continuous, rather than
discrete, time.
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⇒
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0

0

1

0

Fig. 2. One step of an annihilating random walk on hypergraphs.

Definition. [Lazy a.r.w. on hypergraphs]:

Let H = (V,E) be a connected k-uniform hypergraph. Define a lazy annihilating
random walk on H by the following:

(a). Initial state: Initially: Ai ∈ {0, 1}. We will call a vertex i with Ai = 1 live.

(b). Moves: Choose random node i and random edge (i, j1, . . . , jk) containing i.
Simultaneously set Av = Av ⊕ Ai for all v ∈ e (including v = i, which will
result in Ai = 0).

In discrete time the annihilation time of lazy a.r.w. provides, of course, only
upper bound on annihilation in a.r.w (and, thus, convergence of the WalkSAT
algorithm in the dual model). The introduction of continuous time does not create
additional problems by the well-known equivalence between discrete and continuous
time Markov processes with independent Poisson clocks.

Next we define an analogue of coalescing random walks for hypergraphs (Figure ):

Definition. [(Lazy) coalescing random walks (c.r.w.) on hypergraphs]:

Let H = (V,E) be a connected hypergraph. Each vertex holds a multiset of label
Ai. Define a coalescing random walk on H by the following:

(a). Initial state: Ai ⊆ {i}. Note that B := A1 ∪ A2 ∪ . . . ∪ An ⊆ [n]. We will
call a vertex i with |Ai| = odd live.

(b). Moves: Updating node i and hyperedge e = (i, j1, j2, . . . , jk) (according to
a Poisson clock) proceeds by making Ajr := Ajr ] Ai, for r = 1, . . . , k and
Ai = ∅. Here ] refers to the multiset sum, i.e. union with multiplicities.
Note that the move never destroys any label (always A1∪A2∪ . . .∪An = [n])
but may make some indices i satisfy |Ai| = even.

(c). Parity (coalescence) from B: Given set of vertices B ⊆ V (G), ccoal(H,B)
is the minimum t ≥ 0 such that, if starting with Av = {v} when v ∈ B,
Av = ∅ otherwise, at time t |Aj | is even for every j.

Finally, the ”dual” to coalescing random walks, a hypergraph analog of the voter
model (Figure ):
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{1}

. . .

. . .

. . .

. . .

{2}

{3}

⇒
∅

. . .

. . .

. . .

. . .

{1, 2}

{1, 3}

Fig. 3. One step of a coalescing random walk on hypergraphs.

Definition. [multiset voter model on hypergraphs]:

Let H = (V,E) be a connected hypergraph. Define a multiset voter model on H
by the following:

(a). Initial state: Ai = {i}. Note that A1 ∪A2 ∪ . . . ∪An = [n]. W

(b). Moves: Updating node i and hyperedge e = (i, j1, j2, . . . , jk) (chosen accord-
ing to an independent Poisson clock) results in setting Ai = ]kr=1Ajr . Note
that the operation may decrease the number of different ”opinions” present
in the system, if such opinions were only held by node i.

(c). Parity of opinions: Given B ⊆ V (H), parity time cVM (H,B) is the mini-
mum time t such that every initial opinion is present an even number of times
(perhaps zero) among nodes in B.

{1}

. . .

. . .

. . .

. . .

{2}

{3}

⇒
{2, 3}

. . .

. . .

. . .

. . .

{2}

{3}

Fig. 4. One step of a multiset voter model on hypergraphs.

B. Annihilating random walks: reachability and recurrence

If the hypergraph H is actually a graph the long-term structure of configurations of
the a.r.w. is simple: either a single live site survives (if |V (H)| is odd) or none. In
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the general case the behavior is more complicated: the number of live nodes is not
necessarily decreasing, as is the case in the graph setting. There may be, therefore,
recurrent states different from 0 and those states with a single live node.

In the general case one can give [Ist09] a necessary condition for reachability:

Definition. For every pair of boolean configurations w1, w2 : V (H) → Z2 on
hypergraph H we define a system of boolean linear equations H(w1, w2) as follows:
Define, for each hyperedge e a variable ze with values in Z2. For any vertex v ∈
V (H) we define the equation

∑
v∈e ze = w2(v) − w1(v). In the previous equation

the difference on the right-hand side is taken in Z2; also, we allow empty sums on
the left side. System H(w1, w2) simply consists of all equations, for all v ∈ V (H).

Definition. If x is a state on H and l is a hyperedge of H, define x(l)(v) =
1 + x(v), if v ∈ l, x(v), otherwise.

Lemma 4.2. If state w2 is reachable from w1 then the system of equations
H(w1, w2) has a solution in Z2.
Proof. Let P be a path from w1 to w2 and let ze be the number of times edge e is
used on path P (mod 2). Then (ze)e∈E is a solution of system H(w1, w2). Indeed,
element w(v) (viewed modulo 2) flips its value any time an edge containing v is
scheduled.

In a previous paper [Ist09] we claimed a partial converse of Lemma 4.2. As
the result below shows, though, the converse of Lemma 4.2 is however not true.
We give two types of counterexamples. The first one is the setting in [Ist09]:
connected hypergraphs without graph edges. Interestingly enough, for a modulo-
p generalization of our dynamics (with p ≥ 3) such a counterexample does not
exist [Ist15]. The second counterexample shows that the failure of the converse
implication is not specific to hypergraphs: even on graphs the sufficient condition
fails to be necessary.

Theorem 4.3. There exist

(a). a connected hypergraph H that contains no graph edges, and

(b). a connected graph (i.e. all hyperedges have size two) H,

as well as two configurations w1, w2 on H such that system H(w1, w2) has solutions
in Z2, yet w2 is not reachable in H from w1.
Proof.

1. Let H be a hypergraph consisting of three hyperedges e1, e2, e3 sharing a
common vertex (Figure ). Let w1, w2 be the configuration described in that
figure: the private vertices of e2 (displayed with a solid line in Figure ) have
initial value 1 in w1, all other vertices being 0. On the other hand w2 takes
value 0 on the shared vertex and 1 everywhere else.

It is easy to see that system H(w1, w2) has a solution z with z(e1) = z(e3) = 1
and z(e2) = 0. Yet w2 is not reachable from w1. Indeed hyperedges with three
labels of one have no preimage. So the only preimages of state w2 are itself
and the three ones obtained by flipping labels on one hyperedge.
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1

1
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1
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Fig. 5. Unreachability in a hypergraph with no graph edges.
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00

6 ∗⇒
0 1

11

Fig. 6. Unreachability in a graph.

2. Let H be the complete graph K4 and let w1 be 1 at a single vertex v. Let w2

be the configuration with ones at every vertex but v. System H(w1, w2) has
solution ze = 1 for every edge e, yet w2 is not reachable from w1, as w1 has
a single one and w2 has three, but on a graph the number of ones does not
increase.

While we raise the complexity of reachability as an open problem, we believe
it is possible to patch up the result in [Ist09] (perhaps by imposing meaningful
restrictions on states w1, w2) and further extend it in order to provide a large class
of reachability instances for which the necessary condition in Lemma 4.2 is also
sufficient.

On the other case the case w2 = 0, that corresponds to the setting we consider
in this paper, that of a satisfiable XOR-formula

de continuat

C. Coupling annihilating and coalescing random walks

A particular setting we would like to investigate is given by our motivating exam-
ples: the XOR-SAT problem if the system has a solution and the CTD for social



EXPLOSIVE RANDOM WALKS ON HYPERGRAPHS 13

balance. With these cases in mind we define the analogue of annihilation time for
annihilating random walks on hypergraphs:

Definition. [ Annihilation time: ]

Given set of vertices B ⊆ V (G), cann(G,B) is the minimum t ≥ 0 such that in
the lazy a.r.w on G started with Ai = 1 if i ∈ B, Ai = 0 otherwise, at time t we
have Ai = 0 for all i.

When E[cann(G,B)] < +∞ the associated configuration B will be called stabiliz-
ing.

We now extend a coupling argument valid in the case of graphs:

Theorem 4.4. Suppose G is a connected hypergraph and B ⊆ V (G) is a stabiliz-
ing configuration. Then

• in the coalescing random walk on G starting from B one can reach coalescence.

• one can couple the coalescing and annihilating random walks on G such that
cann(G,B) ≤ ccoal(G,B).

Proof. We will define the following stochastic process P :

1. Initial state: Ai = {(i,∞)} for i ∈ B, Ai = ∅ otherwise. Note that A1 ∪
A2 ∪ . . . ∪ An = B × {∞} and that each Ai contains at most one index bi
with (bi,∞) ∈ Ai. We will call such a set live and bi the witness for Ai. Also
denote Bi = Ai \ {(i,∞)} if i is live, Bi = Ai otherwise.

2. Move: At time t: Choose random vertex i (not necessarily live). Choose
random edge (i, j1, . . . , jk). For r = 1, . . . , k

• If both Ai, Ajr are live then make Ajr = (Bi ∪Bjr ) ∪ {(bi, t), (bjr , t)}.
• If, on the other hand, at most one of Ai, Ajr is live then make Aj :=

Ai ∪Ajr .

Finally make Ai = ∅. Note that if we ”move” a dead set Ai to a live set Aj
then Aj will still be live.

3. Stopping: Stopping time cP (G) is the minimum t ≥ 0 such that at most one
i is live (one if n is odd, none if n is even)

Claim. The following are true:

1. P observed on [n]×{∞} and moves of live sets only is the annihilating
random walk on G starting from configuration B. If n is even then at time
cP (G) all particles have annihilated. Consequently cann(G,B) ≤ cP (G,B).

2. P where we disregard second components in all pairs is identical to the coa-
lescent random walk on G and cP (G,B) = ccoal(G,B).

A ”proof by picture” is given in Figure 7. There are two cases: j is live or not.
In both cases the observed process is identical to the annihilating random walk.
Note that if n is even then when coalescence occurs in the c.r.w. all particles have
died in the a.r.w.
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(ai,∞), Bi (aj ,∞), Bj ∅ (ai, t), (aj , t), Bi ∪ Bj

(ai,∞), Bi Bj ∅ (ai,∞), Bi ∪ Bj

Fig. 7. The two cases of stochastic process P . Only two nodes inside a common
hyperedge are pictured.

ai aj ∅ ∅

ai ∅ ∅ ai

Fig. 8. First coupled version: annihilating random graphs (the two cases). Only two
nodes inside a common hyperedge are pictured.

ai, Bi aj , Bj ∅ ai, aj , Bi ∪ Bj

ai, Bi Bj ∅ ai, Bi ∪ Bj

Fig. 9. Second coupled version: coalescing random walks (the two cases). Only two
nodes inside a common hyperedge are pictured.

The reason a result such as Theorem 4.4 is interesting is that on graphs (see
[AF14]) ccoal(G) is identical (via duality) to coalescence time of voter model cVM (G),
which can in turn be upper bounded in terms of a so-called Cheeger time of graph
G, essentially the inverse of the more well-known Cheeger constant of G.

Similar results holds on hypergraphs, although we will need to give them in a
slightly more general form:

Theorem 4.5. For any hypergraph H and B is a stabilizing configuration. Then
the following are true:

• one can reach parity on B in the multiset vector model.

• the coalescence time ccoal(H,B) and the parity time of the associated multiset
voter model cVM (H,B) are identically distributed.

Proof. The proof is an adaptation of the classical duality argument [AF14]: we
will define a process on oriented hyperedges in H (that is edges with a distinguished
vertex) that will be interpreted in two different ways: as parity in the multiset voter
model and coalescence in the coalescent random walk.

The process is described in Figure 10. There is a certain difficulty in correctly
drawing pointed events in hypergraphs. In the figure we represent hyperedges
vertically at the moment the given hyperedge event occurs (times t1 and t2 in the
coalescing random walk), but this may be more difficult to draw if the vertices of
a hyperedge are not contiguous.
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Horizontal lines (e.g. for ball 3 between moments t1 and t2) refer to histories not
interrupted by any hyperedge event between the corresponding times. A horizontal
line may be interrupted by a hyperedge event. In the interest of readability we
chose to drop some horizontal lines from the picture (e.g. at node 3 between time
0 and t1).

A left-right path P between node i and node j is a sequence of hyperedge events
and horizontal lines such that:

• P starts with a horizontal line of node i and ends with a horizontal line of
node j.

• Every horizontal line of a node is followed by a hyperedge event with the
corresponding node being pointed.

• Every hyperedge event is followed by an unique horizontal line corresponding
to a non-pointed node.

For instance, in the picture from Figure 10 we have represented three left-right
paths, between node 2 and each of nodes 1,4,5.

In the c.r.w. the activation of a hyperedge e = [j → i1, i2, . . . ir] pointed at vertex
j is interpreted as vertex j being chosen (together with edge e), thus sending a copy
of its cluster of balls to all other neighbors.

In the multiset voter model the activation of a hyperedge e = [j → i1, i2, . . . ir]
pointed at vertex j is interpreted as j adopting the multiset union of opinions of
i1, i2, . . . , ir.

For instance, in the picture in Figure 10:

• in the c.r.w., assuming that initially Ai = {i}, i = 1, 5, at moment t0 we have
A1 = {1, 2}, A2 = ∅, A3 = ∅, A4 = {2, 3, 4}, A5 = {2, 3, 5}.

• in the multiset voter model at moment t0 we have A1 = {1}, A2 = {1, 4, 5},
A3 = {4, 5}, A4 = {4}, A5 = {5}. Label 3 has disappeared from the system.

Just as in the ordinary c.r.w./voter model, the existence of a left-right path
between nodes i and j (e.g. (2, 1), (2, 4), (2, 5)) is interpreted as the event:

• In the c.r.w.: ”at time t0 node j holds a ball with label i.”

• In the multiset voter model: ”at time t0 node i holds opinion j with multi-
plicity at least one.”

Moreover one path may contribute (when it does) with exactly one ball/opinion
of a given type.

Consider now the event: ”at t0 every node in B on the right-hand side is con-
nected to nodes on the left-hand side by an even number of paths”.

• In the coalescing random walk this is equivalent to ”at t0 we have parity from
B”

• In the multiset voter model this is equivalent to ”at t0 we have parity of
opinions on B”
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1
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1

2 2

3

0
t1 t2

t0

t0 0

33

2

5
5

4
4

1
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2

Fig. 10. Coupling the lazy coalescing random walk and the multiset voter model. Time
runs from left to right in the lazy coalescing random walk and right to left in the multiset
voter model. At time t1 (in the lazy c.r.w.) copies of balls at (pointed) node 2 are sent
to nodes 1 and 3. Similarly, at time t2 copies of cluster at (pointed) node 3 are sent to
nodes 4 and 5.
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D. The multiset voter model and its two-party counterpart

Upper bounding the annihilation time of a.r.w. on graphs can be achieved [AF14]
coupling the voter model with a ”two-party” counterpart. In the sequel we accom-
plish a similar task on general hypergraphs:

Definition. [two-party voter model on hypergraphs]:
Let H = (V,E) be a connected hypergraph. Define the two-party voter model on

H by the following:

(a). Initial state: Ai ∈ {0, 1} for all i ∈ V . We denote A = {i ∈ V : Ai = 1}.
(b). Moves: Updating node i and hyperedge e = (i, j1, j2, . . . , jk) (chosen accord-

ing to an independent Poisson clock) results in setting Ai = ⊕kr=1Ajr .

(c). Parity: Given A,B ⊆ V (H), the parity time cB−VM (H;A,B) is the min-
imum time t such that, starting from configuration A, at time t and subse-
quently

⊕i∈BAi = 0.

Note that, unlike the multiset voter model, in the two-party voter model we
allow initial states A where at time t = 0 ”some nodes do not hold any opinion”.

Theorem 4.6. Let H be a odd connected hypergraph and B ⊆ V (H) a stabilizing
set. Then

• for every A ⊆ V (H) one can reach parity of opinions on B in the two-party
voter model started from configuration A.

• for every A ⊆ V (H) one can couple the multiset voter model and the two-
state voter model with initial state A such that whenever we have parity on B
in the multiset voter model we have parity of opinions on B in the two-party
voter model started from configuration A.

Proof. Given a run of the multiset voter model, define a (coupled) run of the
two-state voter model with initial state A by defining, for every i ∈ V and every
moment t, Ai to denote the parity of the multiset of opinions from set A only held
at moment t by vertex i.

Corollary. In the settings of Theorem 4.6 we have

Pr[c2−VM (H;A,B) > t] ≤ Pr[CVM (H;B) > t]

5. UPPERBOUNDING ANNIHILATION TIME IN
A.R.W. ON HYPERGRAPHS

We first discuss and motivate our spectral measure, a variant of the Cheeger con-
stant, of hypergraphs.
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A. Spectral measures for hypergraphs

The classical definition of the Cheeger constant of a connected graph is [Chu97]:

φ(G) = min
0<|A|≤n2

|E(A,A)|
|A| ,

where E(A,A) is the edge boundary of set A, that is, the set of edges with one
endpoint in set A and another one in its complement. In practice a related version
is often used:

Definition. The edge expansion (or Cheeger constant) h(G) of graph G is de-
fined as

h(G) = min
0<|A|<n

n|E(A,A)|
|A||A| , (5.1)

On the other hand the analysis of voter model on graphs [AF14] required a
different variant, related to the conductance of a graph and called in [AF14] Cheeger
time:

Definition. For a k-regular graph G define the Cheeger time τG of G by

τG = sup
0<|A|<n

k|A||A|
n · |E(A,A)|

(
=

k

h(G)

)
The definitions of Cheeger constant/time has recently been lifted up from graphs

to simplicial complexes in several related but different ways:

• First, cohomological (coboundary) versions of Cheeger constant have ap-
peared, implicitly or explicitly, in several works [Gro10, LM06, DK12, NR13]:

φ(X) = min
f∈Ck−1[X,Z2]

|δXf |
|[f ]|

• On the other hand Parzanchevski et al.[PRT15] gave a combinatorial exten-
sion of the Cheeger constant to simplicial complexes:

h(X) = min
V=tk

i=1
Ai

n · |F (A1, A2, . . . , Ak)|
|A1| · |A2| · . . . · |Ak|

where the minimum is taken over all partitions of V into nonempty subsets
A1, A2, . . . Ak and by F (A1, A2, . . . , Ak)) we have denoted the set of (k − 1)-
dimensional simplices with one vertex in each of A1, A2, . . . Ak (see also the
slightly modified version h′(X) of Gundert and Szedlák [GS15]).

Our desired connection with the voter model on hypergraphs will require, how-
ever, a specially tailored Cheeger-like quantity, somewhat similar to the definition
of coboundary expansion but with an easy combinatorial definition:
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Definition. Given a k-uniform hypergraph H, define the odd Cheeger time τH
as

τodd(H) = sup
0<|A|≤|V |

nk

|E−(A,A)| ,

The definition above coincides, in the case of connected graphs, with the Cheeger
time of H defined in [AF14].

B. Main result

We can finally give our main result. It gives a bound useful only for odd connected
hypergraphs H, as it requires that τodd(H) < +∞.

Theorem 5.1. Given odd connected hypergraph H and set B ⊆ V (H) we have

E[cVM (H,B)] ≤ TH(n),

where TH(n) is a function such that:

1. TH(n) = O(n), if there exists constants δ > 0 such that for all nonempty set
A, Dodd(A) ≥ δ.

2. TH(n) = O(n2τodd(H)), if case 1 does not apply but Dodd(A) ≥ 0 for every
nonempty set A.

3. TH(n) = Θ(eΩ(n)), if there exist 0 < η1 < η2 < |B|/n and δ > 0 such that for
all sets A ⊂ V with η1n < |A| < η2n we have Dodd(A) < −δ.

Consequently similar upper bounds hold for the annihilating random walk on H.

A few comments on the bounds on TH(n) from the above result are in order:

• Our result can be restated as the claim that the odd Cheeger drift dictates the
nature of the convergence time of the multiset voter model (and, with it, of
the application to algorithm WalkSAT, see Subsection D. below). Of course,
drift-based methods are well established in the analysis of local search heuris-
tics [HY01, DJW02, LW14]. Our contribution can, therefore, be restated as
identifying the odd Cheeger drift as the relevant quantity driving the dynam-
ics of WalkSAT.

• Of course, conditions in Cases 1,2, 3 are not exhaustive. They are chosen
by analogy with the possible situations in drift analysis (and, more gener-
ally, in that of mixing in Markov chains) with two polar limits, expansion,
respectively a bottleneck cut.

• Case 1 is only included for completeness: we know of no hypergraph H to
which it applies. Even a ”variable (positive) drift” scenario [LW14] does not,
we believe, occur in typical cases (see remark in Example B. below for an
explanation of this intuition)

• The result arises from considering the evolution in time of Nt, the number of
vertices having an odd number of opinions in the multiset voter model (or,
equivalently of the coupled two-state voter model). In one update step Nt
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can only go up/down by 1 or stay the same. On the other hand, for odd
connected hypergraphs H, state 0 is the only absorbing state of the two-state
voter model: for every configuration C different from 0 at least one edge e
has an odd number of ones in C. Let v be a vertex in e labeled 1 in C.
Scheduling pair (v, e) decreases the number of ones.

• In the first case of the Theorem the walk has a positive bias towards zero.
The convergence time is therefore linear. In the second case the random walk
is at worst unbiased. It will hit zero only as a result of diffusive behavior.
The convergence time would be quadratic if the probability of moving to the
left/right would be (lower bounded by) a constant. It is not in general, thus
we need to slightly alter the result to take into account this phenomenon.
The Cheeger constant appears in the final upper bound. Finally, in the last
case, in the region η1n < |A| < η2n the chain is driven, on the average, away
from zero. With high probability it will eventually cross the barrier, but will
need exponential time to do so.

Example 1. Every graph G falls in the case 2 of the Theorem, and we fall over
the result in [Ist09].

Example 2. As we have seen, the k-uniform complete hypergraph falls into Case
3 of the Theorem. Intuitively (but without proof) this should be the case for every
hypergraph without graph edges. The reason is that when

C. Proof of Theorem 5.1

Consider the following process, parameterized by a positive number ε > 0, which
yields a random model we will call Dε:

• we partition the vertices of H into two parts, D and D by including each
vertex into D independently with probability 1/2− ε.

• we run the two-state voter model from configuration D (i.e. 0 on labels of
vertices of D (”reds”) and 1 on vertices of D (”blues”)).

• We denote by Dt the set of vertices labeled 1 at time t, by NDε
t the cardinal

of Dt, and by ∆Dε
t the difference in the number of ones as a result of the

(possible) jump at time t+ dt.

• Denote by CDε the smallest time t ≥ 0 when NDε
t = 0, where n is the number

of vertices of H.

Denote by cDε

2−VM (H;B) the corresponding parity time.

Lemma 5.2. For every 0 < ε < 1/2 we have

E[cVM (H;B)] ≤ 2

1− 2ε
· E[CDε

2−VM (H;B)]

Suppose at time t we do not have parity on B. Let Ct be the resulting con-
figuration. Let (a1, a2, . . . , an) and the vectors of label parities on B of all initial
opinions. By our assumption there must be two different opinions v1, v2 whose
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number of copies in Ct|B have different parities:

ai 6= aj (mod 2).

We next apply the following trivial lemma, which simply follows from the fact
that the two vectors are distinct and each entry on which they differ is independently
chosen in D with probability 1/2− ε:

Lemma 5.3. Conditional on being in state Ct,

Prob[
∑
k∈D

ak ≡ 1 (mod 2)] ≥ 1/2− ε.

Proof. If ai is odd then including/excluding i from D changes the parity of∑
j∈D aj .
As a consequence we infer, similarly to the graph case [AF14], that

Prob[cDε

2−VM (H;B) > t] ≥
(1

2
− ε
)
Prob[cVM (H;B) > t].

Finally, since for any random variable X on the nonnegative integers E[X] =∑
i≥0 Pr[X ≥ i], we infer

E[cVM (H;B)] ≤ 2

1− 2ε
· E[CDε

2−VM (H;B)]

Therefore all it remains now, to prove Theorem 5.1, is to show that

Lemma 5.4. We have

maxBE[CDε

2−VM (H;B)] ≤ Tn(H)

for some function Tn(H) with the properties from Theorem 5.1.
Proof.

First we prove the following result about the stochastic model D:

Lemma 5.5. We have

Prob[∆ND
t = −1] ≥ 1

τH
· N

D
t · (n−ND

t )

n
.

and

Prob[∆ND
t = −1]− Prob[∆ND

t = 1] =
|E−(Dt, Dt| − |E+(Dt, Dt|

nk

Proof. ND
t decreases by one exactly when the chosen vertex v has label 1 and the

edge e 3 v contains an odd number of nodes (including v !) with label 1. Similarly,
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ND
t increases by one precisely when the chosen vertex v has label 0 and the edge

e 3 v has an odd number of nodes with label 1.
The number of distinct vertex-edge pairs in the two-party multiset voter model

is precisely kn, since every vertex of H has degree exactly k.
The number of vertex-edge pairs that lead to an increase by 1 is nothing but

|E+(Dt, Dt)|, with E+ having the meaning from Definition 3.
We complete the proof of the upper bound as follows:

• In the first case we are in a constant (additive drift) scenario and we could
apply basic results from drift analysis [HY01]. The following is a sketch of
an independent proof:

First we rewrite drift condition as

E[∆ND
t ] = Prob[∆ND

t = 1]− Prob[∆ND
t = −1] ≤ − δ

k

Because probabilities above belong to interval (0,1), −1 ≤ E[∆ND
t ] ≤ − δ

k ,
hence δ ≤ k. Also

Prob[∆ND
t = 1] = 1

2 [(Prob[∆ND
t = 1] + Prob[∆ND

t = −1]) +

+(Prob[∆ND
t = 1]− Prob[∆ND

t = −1])] ≤
≤ 1

2 − δ
2k

also

Prob[∆ND
t = −1] ≥ Prob[∆ND

t = 1] + δ
k ≥ δ

k

In fact, as long as ND
t > 0, ∆ND

t can be stochastically upper bounded by a
random variable Xt taking value 0 with the same probability as ∆ND

t , and
such that E[Xt] = − δ

k .

Since hyperedge choices are independent, random variables ∆ND
t are also

independent and we can take their dominating random variables Xt to be
independent too.

Given arbitrary independent random variables Zt with values in −1, 0, 1 and
E[Zt] = − δ

k define chain (Yt) by Y0 = Z0, Yt = Yt−1 + Zt. By standard ap-
plication of elementary hitting time techniques (such as the forward equation
and generating functions) to chain Yt we infer

EY0 [T{Yt=0}] =
X0δ

k
.

Applying this to chain ND
t we infer

max
B

E[CDε

2−VM (H;B)] ≤ nδ

k
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• The argument is similar: we couple the process with a random walk Yt on the
integers with a reflecting barrier (upper bound) at n. We do so by requiring
that for every 0 ≤ k < n,

Pr[∆ND
t = 0|ND

t = k] = Pr[∆Yt = 0|Yt = k]. (5.2)

and redistributing the remaining probability equally between Pr[∆Yt = −1|Yt =
k] and Pr[∆Yt = 1|Yt = k]. From the hypothesis it follows that ND

t can be
stochastically dominated by Yt, so upper bounds for the maximum hitting
time of Yt are upper bounds for the maximum hitting time of ND

t as well.

By equality

Pr[∆Yt = −1|Yt = k] = Pr[∆Yt = 1|Yt = k] ≥ 1

2
· 1

τodd(H)
· k · (n− k)

n
.

Now we apply to chain Yt Lemma 10 from [AF14]), comparing Yt with the
random walk on the integers, whose maximum hitting time is θ(n2) The
conclusion is that T (n) can be taken to be O(n2 · τodd(H)).

• Similar to the proof of Theorem 3.4.

D. Application to k-XOR-SAT

Putting the last three inequalities together, applying them to k-XOR-SAT and
getting back from a continuous to an equivalent discrete time model we get an
upper bound on convergence time of WalkSAT on solvable instances H of k-XOR-
SAT whose dual D(H) is a simple hypergraph:

Corollary. Given instance Φ of k-XOR-SAT, k ≥ 3, the following holds:

maxAE[WalkSAT (X0)] ≤ 2m2 · TD(H)(m),

where m is the number of equations in H and the maximum is taken over all initial
assignments X0.

Proof. An easy consequence of the relation between discrete-time Markov chains
and their continuous-time counterparts [Ald83], and the fact that |V (D(H))| = m.

6. CONCLUSIONS AND ACKNOWLEDGMENT

The work can be completed in many ways. Complete details and and many more
results (for instance upper bounds on annihilation similar to those in [CEOR13])
should be a subject for further research. On the other hand, it would be interesting
to see if the running time of other local search procedures, perhaps for more inter-
esting problems like k-SAT can be analyzed in terms of (suitably defined) ”particle
systems”.
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