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Abstract

Associate to each sequence A of integers (intending to model packet
IDs in a TCP/IP stream) a sequence of positive integers of the same
length M(A). The i’th entry of M(A) is the size (at time i) of the
smallest buffer needed to hold out-of-order packets, where space is
accounted for unreceived packets as well. Call two sequences A, B
equivalent (written A ≡FB B) if M(A) = M(B).

For a sequence of integers A define SUS(A) to be the shuffled-up-
sequences reordering measure defined as the smallest possible number
of classes in a partition of the original sequence into increasing subse-
quences. We prove the following result: any two permutations A,B of
the same length with SUS(A), SUS(B) ≤ 3 such that A ≡FB B are
identical. The result is no longer valid if we replace the upper bound
3 by 4.

We also consider a similar problem for permutations with repeats.
In this case the uniqueness of the preimage is no longer true, but
we obtain a characterization of all the preimages of a given sequence,
which in particular allows us to count them in polynomial time.

The results were motivated by explaining the behavior and engi-
neering Restored, a receiver-oriented model of traffic we introduced
and experimentally validated in earlier work.
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1 Introduction

The TCP protocol [16] is the fundamental protocol for computer communi-
cations. TCP breaks the information into packets, and attempts to maintain
a ordered packet sequence to be passed to the application layer. It accom-
plishes this by buffering packets that arrive out-of-order.

Recent work in the area of network traffic modeling has brought to
attention the significant impact of packet reordering on the dynamics of
this protocol [3, 2, 11]. This has stimulated research (mainly applied) on
measuring and modeling reordering [14, 13], and on quantifying the impact
of packet reordering on application performance.

In this paper we study a combinatorial problem motivated by modeling
packet reordering in large TCP traces: suppose that we map a sequence A
of packet IDs into the sequence of integers M(A) representing the different
sizes of the buffer space necessary to store the out-of-order packets; we
assume that space in the buffer is reserved (and accounted) for unreceived
out-of-order packets as well. What kind of additional information on the
sequence A is needed to identify A, given M(A) ?

The problem arose in the context of Restored [8], a method for
receiver-oriented modeling and compression of large TCP traces. In an
experimental paper we showed [8] that Restored is able to regenerate se-
quences similar to the original sequences with respect to several reordering
metrics. One metric for which this result is true was reorder density (RD)
from [14, 9, 15]. We found the experimental result for RD paradoxical for
the following reason: Restored guarantees that the regenerated trace is
(locally) similar to the original sequence for a precise notion called ≡FB-
equivalent (rigorously explained below). On the other hand ≡FB equiva-
lence does not uniquely determine the value of measure RD; thus recon-
structed sequences have no special reason to have the same RD value as
the original sequence: they could get any value compatible with FB equiv-
alence.

Though possible in principle, the scenario we outlined never happened
in our experiments with metric RD in [8]. One could attribute this either
to the particularities of our reconstruction method or to the existence of
“extra structure” in real-life TCP traces that would somehow preclude in-
consistency.

The theoretical result in this paper (Theorem 1 below), together with
an experimental observation we made in [6] (that over 99% of the traces
we previously considered for benchmarking RESTORED have values of the
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SUS reordering measure at most 3), makes this result somewhat less para-
doxical: indeed Theorem 1 proves that all reordering patterns arising from
permutations (i.e. sequences with no repeated or lost packets) satisfying con-
dition SUS ≤ 3 have at most one preimage with these properties; Therefore
all reordering measures are consistent on them.

On the other hand Theorem 2 below provide (as discussed in Section
5.2 below) a way to design a better encoding for the unordered phase of RE-
STORED (see below); the advantage (compared with the method described
in [8]) is an easier method to randomly sample preimage sequences.

To sum up: the two theoretical results in this paper (Theorems 1 and 2)
serve to explain some paradoxical behavior of a software system we had
previously designed for inference of large network traces and help to better
engineer it.

2 Preliminaries

We first give a brief primer on the relevant aspect of the TCP protocol,
Restored and the concepts used in the sequel.

2.1 A brief introduction to networking

The TCP protocol [16] attempts to maintain an ordered stream of data
bytes, identified by an integer called byte ID, that is effectively communi-
cated through the network by breaking it down into packets. The ordering
is maintained by buffering out-of-order packets. Buffer dynamics can be
described in part using several parameters:

1. The first parameter is NextByteExpected, and is the smallest index of
a data byte that has still not been received by the receiver.

2. A second, related, parameter is LastByteRead, the index of the last
byte processed by the receiver-side application that communicates
through the network via the TCP protocol. Throughout this paper
we will make the simplifying assumption that data is read by the ap-
plication as soon as it is ready. In other words NextByteExpected =
LastByteRead+1.

3. Another parameter is LastByteRcvd, the index of the last byte that
has arrived at the receiver, awaiting processing.
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4. RcvWindow, the size of the receiver window, is a parameter that is
meant to provide the sender with an estimate of the available buffer
space at the receiver.

5. Finally, RcvBuffer is a implementation-dependent system constant,
the size of the receiving buffer.

The functioning of the TCP protocol ensures that these four parameters
are related through the relation ([10] section 3.5):

RcvWindow = RcvBuffer− (LastByteRcvd− LastByteRead). (1)

The term in parentheses on the right-hand side is the actual size of the
TCP receiver-buffer. The measurement takes into account space reserved
(but not necessarily used) for all packets from the first expected to the
last arrived. This is, of course, proportional to the buffer size measured in
packets rather than bytes if all packets have the same size.

TCP is receiver-driven: that is, the receiver attempts to maintain con-
trol on the sender flow stream by directing the sender speed, and acknowl-
edging the received packets. An acknowledgment (shortly, ACK) generally
consists of the ID of the first packet that has not yet been received. Acknowl-
edgment mechanisms vary across different implementations, and can entail
delayed or selective acknowledgments, urgent retransmission requests, etc.
From our standpoint, what is important that we can associate a sequence of
integer ACKs to every sequence of packet IDs, the sequence of ACKs that
would be sent if the receiver would immediately ACK every packet received.

Example 1 Consider the following hypothetical sequence of packet IDs:
A = (4 3 2 1). Then the sequence of ACKS is ACK(A) = (1 1 1 5).

2.2 A primer on RESTORED

Restored [8] is a Markovian model of large TCP traces that incorporates
information on the dynamics of packet reordering. It can be used to pro-
vide estimates of various measures of quality of service without making
these measurements online, or storing the entire sequence. Rather, it first
“compresses” the trace into a small “sketch” that allows regeneration of a
TCP trace with (hopefully) similar characteristics. If needed, we can then
perform a large number of measurements on the regenerated trace. Thus,
the way Restored is envisioned to work involves the following steps:
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1. “Learn” Markovian models (and their associated parameters) instead
of storing large TCP traces.

2. Use these models to reconstruct similar sequences.

3. Use these sequences to estimate measures of quality of service for the
original sequences.

Of course, one could hope to further add features to the model, beyond
the details provided by Restored by, for instance, finding efficient ways
of comparing and clustering connections with similar traffic properties. We
will not discuss these engineering aspects further, but concentrate on some
mathematical aspects relevant to engineering Restored .

For the purposes of the present paper, a connection is simply a sequence
of integers (packet IDs). Suppose that the receiver observes the following
(hypothetical) packet stream

1 2 3 6 5 7 4 8 9 10 12 13 14 11.

In this example packets with IDs 4, 5, 6, 7, 12, 13, 14 and 11 arrive out of
order. One can, consequently, classify the received packets into two cate-
gories: those that can be immediately passed to the application layer, and
those that have to be temporarily stored before delivery. In the example,
packets 5, 6, and 7 are temporarily buffered, and the buffer is only flushed
when packet 4 is received. Similarly, packets 12, 13, and 14 are temporarily
buffered, and the buffer is flushed when packet 11 arrives. We will call a
packet that marks the end of a sequence of consecutively buffered packets
a pivot packet. Packets that are immediately delivered to the application
layer are also trivially pivots. In our example this is the case for packets 1,
2, 3, 4, 8, 9, 10 and 11.

The distinction we introduced effectively defines a partition of the
stream of packet IDs into segments. A segment of packets is bounded by
pivot packets. There are two possibilities for describing packet dynamics

• packets arrive in order. The largest consecutive subsequence of packets
for which this property holds will be represented in Restored as the
occurrence of an ordered state.

• there is reordering and buffering. Such a segment bounded by consec-
utive pivot packets form an occurrence of an unordered state.
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Figure 1: Markovian model of packet dynamics in RESTORED.

Each occurrence of the ordered state is followed by one or more occur-
rences of the unordered state. It was the contribution of [8] to show that
one can use a Markov Chain with the two states (see Figure 1) to represent
the dynamics of packet IDs of real traces.

The sequence of packet IDs in the ordered state is trivial by definition:
they arrive in order, starting with the first expected packet. For the un-
ordered state we proposed in [8] to deal with packet IDs in the unordered
states by encoding reordering patterns into “sketches” via a many-to-one
mapping M defined on sequences of packet IDs. The mapping reported in
[8] was the following:

Definition 1 Let A = {A1, A2, . . . , An} be a sequence of packet IDs (con-
sidered on the receiver side). First define:

• Hi is the highest ID in the sequence A1, A2, . . . , Ai.

• Li is the largest ID of a packet among A1, A2, . . . , Ai that can be up-
loaded, zero if none of them can. Equivalently Li = ACKi − 1.

Further, define buffer sequence M(A) associated with sequence A as follows.
M(A) = (M1, . . . ,Mn) with

Mi = Hi − Li. (2)

In other words, M is the size of the smallest buffer large enough to store
all packets that arrive out-of-order, where the definition of size accounts for
reserving space for unreceived packets with intermediate IDs as well.

Two sequences of packet IDs P and Q are full buffer (FB) equivalent
(written P ≡FB Q) if M(P ) = M(Q).

Example 2 Let A = (4 3 2 1). Then M(A) = (4 4 4 0).



Identifying almost sorted permutations 7

The mapping M is many-to-one, but a preimage (when it exists) can
be computed in polynomial time [7]. This was used in the regeneration
algorithm, where first we use the Markov chain to sample a sequence of
ordered and unordered states. In any occurrence of the ordered state we
simply sample from the distribution of possible lengths of such sequences.
On the other hand, in each occurrence of the unordered state we first sample
a sketch S from the distribution of such sketches and then reconstruct a
preimage (via M) of S.

Furthermore, mapping M defined this way provides a formal way to
guarantee that the reconstructed sequence is locally “similar” to the original
one. The formal notion of similarity has implication for the dynamics of the
TCP protocol:

Definition 2 Two packet sequences A,B are behaviorally equivalent if they
yield the same sequence of ACKs.

Suppose now that a TCP implementation uses simple (as opposed to
selective or cumulative) ACKs , and acknowledges every single packet. Then
two traces that map (via M) to the same sequence are behaviorally equivalent
[5]. As the dynamics of the congestion window is receiver-driven, assuming
identical network conditions for the ACK sequences, such traces can be
regarded as “equivalent,” from a receiver-oriented standpoint.

We will also need a standard measure of disorder [4]. This measure is
denoted by shuffled up-sequences (SUS) and is defined as follows:

Definition 3 Given sequence of integers A denote by SUS(A) the mini-
mum number of ascending subsequences into which we can partition A.

For example, a sequence A = ⟨6, 5, 8, 7, 10, 9, 12, 11, 4, 3, 2⟩ has

SUS(A) = ∥{⟨6, 8, 10, 12⟩, ⟨5, 7, 9, 11⟩, ⟨4⟩, ⟨3⟩, ⟨2⟩}∥ = 5, (3)

where ∥S∥ denotes the cardinality of a set S.

3 Main result

In this section we will prove our main result:

Theorem 1 Let A,B be permutations of length n with SUS(A), SUS(B) ≤
3 such that A ≡FB B. Then A = B.
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Observation 1 The theorem is no longer true if we replace the condition
with SUS(A), SUS(B) ≤ 4. This is witnessed by sequences (4 3 2 1)
and (4 2 3 1). Indeed A ≡FB B, since they both map to (4 4 4 0).
In fact SUS(A) = 4, SUS(B) = 3.

SUSGreedy(W)

INPUT: W = (p1, p2, . . . , pn)
a list of non-negative integers.

let i = 1;
let j = 1;
let L1 be the empty list;
while (i ≤ n){
add pi to the first list Lt, t ≤ j
where it can be added while
keeping it sorted;
if this is not possible

{
j++;
create new list Lj = {pi};

}
i++;
}
let u be the number of lists
created by the algorithm;

OUTPUT
u = LDS(W ) = SUS(W ).

RECONSTRUCT

INPUT: list W = (w1, w2, . . . , wn)
of positive integers in the range 1 . . . n

let PACKET and ACK be integer vectors
of size n, with all fields −1;
let LARGEST = 0, ACK[0] = 0;
also let w0 = 0.
for (i = 1 to n)

if (wi < wi−1){
PACKET [i] = ACK[i− 1];
ACK[i]:=ACK[i-1]+(wi−1 − wi);

} else {
ACK[i]=ACK[i-1];
if (wi > wi−1)

LARGEST:= PACKET[i]:=
:= LARGEST+(wi − wi−1);

}
for (i = 1 to n)

if (wi = wi−1){
let PACKET [i] be the smallest
integer not in {PACKET [j]}j=1...i−1

}
if (PACKET is a permutation of {1, . . . , n})
return PACKET;
else return NO PERMUTATION EXISTS;

Figure 2: (a) Greedy Algorithm for computing SUS (b).Algorithm for re-
constructing permutations from buffer sizes

Proof:

We consider the greedy algorithm in Figure 2(a). The algorithm is
related to patience sorting [1] and has been implicitly shown to compute
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measure SUS in [12]; the reason is that SUS coincides [12] with another
reordering measure denoted by LDS, defined as follows:

Definition 4 Let A = (a1, a2, . . . , an) be a sequence of nonnegative integers.
LDS(A) is defined as the longest length of a decreasing subsequence ai1 >
ai2 > . . . aij (1 ≤ i1 < i2 < . . . < ij ≤ n) of A.

But it is well-known [1] that patience sorting (and indeed, algorithm
SUSGreedy) computes parameter LDS (to make the paper self-contained
we will reprove this result below).

We next give a simple algorithm called RECONSTRUCT, displayed
in Figure 2 (b), that, given a sequence W of positive integers constructs (if
possible) a permutation A of size n with SUS(A) ≤ 3 such that M(A) = W .
The proof that the algorithm is correct will imply the uniqueness of sequence
A.

We prove the correctness of algorithm RECONSTRUCT in a couple
of intermediate steps. The first two apply to a general sequence A (rather
than one with SUS(A) ≤ 3).

Lemma 1 Suppose there exists a permutation π with M(π) = w. Then the
following are true for any i ≥ 1:

1. The last element added to list Li is the maximum element in lists Lk,
k ≥ i. In particular the largest element of L1 is the maximum element
seen so far.

2. If element x is the largest element seen up to step i then x = ACKi +
Mi − 1.

Proof: Let i = 1. Statement 1. is clearly true. For the second statement,
note that ACK1 = 2 and M1 = 0 if x = 1 (in-order packet) otherwise
ACK1 = 1, M1 = x.

Consider now the case i > 1. By the induction statement, the largest
element seen so far (call it y) is the last element of L1 and y = ACKi−1 +
Mi−1.

Case 1: x is added to L1. By the definition x ≥ y so x is the largest
element seen so far. Moreover, since x is an out-of-order element we have
ACKi = ACKi−1 and Mi = Mi−1 + x− y.

Case 2: x is added to some other list Lj . If x is the first element
of the new list then statement 1 follows immediately. Otherwise let z be the
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largest element of list Lj before adding x. Applying the induction hypothesis
it follows that z is the largest element in lists Lk, k ≥ j. But z ≤ x (since
we add x to list Lj). Thus x becomes the new largest element of lists Lk,
k ≥ j. As for the second statement, from the algorithm it follows that x < y
so y is still the largest element seen so far. If the buffer size does not modify
then the desired relation follows from y = ACKi−1+Mi−1 (which holds by
induction) and relations ACKi = ACKi−1 and Mi = Mi−1. Otherwise the
buffer shrinks with size ACKi−ACKi−1, so Mi−1−Mi = ACKi−ACKi−1.
We infer the fact that

y = ACKi−1 +Mi−1 − 1 = ACKi − (ACKi −ACKi−1) +Mi−1 − 1 =

= ACKi + (Mi −Mi−1) +Mi−1 − 1 = ACKi +Mi − 1.

2 2

Corollary 1 Algorithm SUSGreedy correctly computes u = LDS(A) (which
is equal to SUS(A) [12]).

Proof: Let B = ai1 > ai2 > . . . > aiLDS(A)
be a decreasing subsequence

of W of maximum length, and let L1, L2, . . . , Lj be the lists created by the
algorithm on input sequence A. Each list Lk is increasing, so it contains
at most one element from B. Therefore u ≥ LDS(A). On the other hand,
each element am set by the algorithm to a list Lk, k ≥ 2 is smaller than
some element an, n < m, set by the algorithm to list Lk−1 (otherwise am
would be set to a list Lj , j < k). Applying this observation starting with
the last element of list Lu we create a decreasing sequence of length u. It
follows that u ≤ LDS(A), thus u = LDS(A). 2

From now on we assume that there exists a permutation A such that
SUS(A) ≤ 3 such that M(A) = w. We will run the algorithm SUS-
Greedy along algorithm RECONSTRUCT. First we give a simple corollary
of Lemma 1:

Corollary 2 Suppose that wi > wi−1. Let y be the largest ID of a packet
received in stages 1 to i − 1 and x be the ID of the new packet. Then
x = y + (wi − wi−1) and x is added by SUSGreedy to list L1.

Next we deal with another possible case, the one when the buffer size
shrinks:
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Lemma 2 (a). Let packet ID x be added at stage i, and assume that wi <
wi−1 Then x = ACKi−1 and all packets with indices at most ACKi−1+
(wi−1 − wi − 1) have been received in the first i stages.

(b). Suppose packet ID x is added by algorithm SUSGreedy to list L3. Then
packet x falls into case (a) of this lemma.

Proof:

(a). The fact that x = ACKi−1 follows from the definition of parameter
ACK and the fact that the buffer shrinks. The second relation follows
from the fact that the buffer shrinks by exactly wi−1 − wi.

(b). Since x goes in list L3, at the time when it is added x is smaller than
the last element in lists L1 and L2. If x were larger than ACKi−1

then the packet with index ACKi−1 (which arrives sometimes after x
does) could not be placed in lists L1, L2 or L3, making the sequence
A require SUS(A) ≥ 4, a contradiction.

The other two relations follow from the definition of parameter ACKi.

2

Lemma 3 In the conditions of Theorem 1 there exists at most one permu-
tation π with M(π) = w, and it is the one found by algorithm RECON-
STRUCT.

Proof:

This follows easily: if wi ̸= wi−1 then by Corollary 2 and Lemma 2 the
ID of the packet is uniquely determined. To prove the Lemma we have to
show that this is true for the case wi = wi−1 as well. We claim that if a
packet ID x is set at stage i in the second for loop then it must correspond
to adding x to list L2. Indeed, if x were added to L1 then it would be the
largest element seen so far (hence we would have wi > wi−1). The fact that
x cannot be added to L3 follows from Lemma 2.

Since list L2 is sorted, x is the smallest element that has not been
set up to this stage. This constraint uniquely determines the value of x,
thus proving Lemma 3. 2
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4 Extension to permutations with repeats

In [7] we have also considered extending encodings of permutations with
repeats, defined as follows:

Definition 5 A permutation with repeats is a sequence of integers A =
A1, . . . , Am such that,

1. for some n ≥ 1,

{A1, A2, . . . , Am} = {1, 2, . . . , n}

(as sets).

2. For any repeat packet Ai, we have

Ai > ACKi.

The second condition is a reasonable assumption from the standpoint of
TCP behavior: namely, repeats of a packet that has already been uploaded
to the application layer are removed from consideration.

In that paper the encoding of permutations was not M, but a different
map B. In the sequel we define a similar extension of map M:

Definition 6 Let A be a permutation with repeats. Let A the subsequence
of A obtained by eliminating all repeats. Define M as follows: M(A) is
obtained by inserting −1’s into M(A) in positions corresponding to repeat
packets.

Also, for two packet sequences define A ≡FB B iff M(A) = M(B).

Example 3 If
A = (4 5 6 2 4 1 3)

then
M(A) = (4 5 6 6 − 1 4 0).

Theorem 1 does not extend to the case of permutations with repeats:

Example 4 Let A, B be the following two sequences.

A = (4 5 6 2 4 1 3)

and
B = (4 5 6 2 5 1 3)

Then A ≡FB B and SUS(A), SUS(B) = 3.
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However, as we show in the proof of the following result we can easily
obtain a compact representation of all sequences in the preimage of a given
string. This representation allows us to count the number of such sequences
in polynomial time:

Theorem 2 There exists an algorithm that, given P = P1 . . . Pn a sequence
of positive integers counts the number U of permutations with repeats A =

A1, A2, . . . , An such that A ∈ M
−1

(P ) and SUS(A) ≤ 3 in time polynomial
in the sizes of P and U.

Proof: We will attempt to give a characterization of sequences A with the
properties listed in the above Theorem that will enable us to count them
efficiently.

First, note that the conclusions of Lemmas 1 and 2 are still true for
permutations with repetitions as well, since its proof we never used the fact
that we are getting distinct elements.

Lemma 4 No repeat packet is added to list L3.

Proof: This is a simple consequence of the fact that every packet added
to list L3 is (by Lemma 1) an ACK packet. Once received, such an ACK
packet is longer considered (by the convention we made in Definition 5)
among repeats. 2

Lemma 5 Consider a permutation with repeats A with the properties in
Theorem 2 and its subsequence A obtained by removing all repeats. Then
packets of A that belong to A are set when running SUSGreedy(A) on the
same list as when running SUSGreedy(A).

Proof: For lists L1 and L3 this follows directly from Lemma 1 and
Lemma 2 for permutations with repetitions.

On the other hand, a packet added by SUS(Greedy(A) to L2 could
only be added by SUSGreedy(A) to L2 or L3, because, by Lemma 1 packets
added to L1 are the largest seen so far, which the given packet is not.

It cannot, however, be added by SUSGreedy(A) to L3 because, by
Lemma 2 for permutations with repetitions, it would have to be an ACK
packet; however we assumed it’s a repeat. 2

With Lemma 5 settled, proving Theorem 2 is easy: first we eliminate
the −1’s from sequence W and apply Theorem 1 to recover the unique
permutation in the preimage. That allows us to the values Ai for all indices
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i such that Wi ̸= −1. In particular let I2 be the (ordered) set of indices i for
which packet Ai goes to list L2. We can also simulate the buffering process
and determine, for any such i the set Bi of packets buffered at moment i,
excluding the largest such packet.

It remains to determine the possible values Ai for those positions cor-
responding to repeats (i.e. Wi = −1). Such a packet can either be:

1. A repeat of the largest packet on the list L1 at time i, or

2. A repeat of a packet that is buffered at stage i that will be added by
SUSGreedy(A) on list L2.

We will call indices i positions of type 1 and of type 2, based on which
of the two cases applies.

Repeats of the first type do not create any additional constraint for
subsequent packets, as they don’t modify the value of the largest packet on
list L1, or other parameters (ACK, etc). Also the value of such a packet
is uniquely determined: it’s simply a copy of the last element on list L1

(if P1 = −1 simply return 0, as the sequence cannot start with a repeat
packet).

As for repeats of the second type, there are three constraints they have
to satisfy:

1. First, any such packet has to be a repeat of a copy of a packet that is
buffered at the moment it is added onto L2, different from the largest
buffered packet (or else it would be added to L1).

2. Their addition to L2 must result in the maintenance of an increasing
order on this list.

The first condition simply states that Ai ∈ Bi. The second condition
requires some care. Let 1 ≤ i ≤ n and let i1 < i < i2 be the consecutive
moments in I2 when non-repeat packets are added to L2. Then the value
Ai of the repeat packet must correspond to a value Ai1 ≤ Ai < Ai2 . One
of i1, i2 might fail to exist, in which case we replace the missing limit in the
previous inequality by 0 (in the case of the lower value) respectively +∞.

Define, for each i with Pi = −1,

Ci = Bi ∩ [Ai1 , Ai2)

Thus, to specify a sequence A as in Theorem 2 we have to specify:
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• (i): which of the indices i with Pi = −1 are of the second type.

• (ii): an integer Ai ∈ Ci for any such i such that the resulting sequence
is monotonically nondecreasing.

The conclusion of this argument is that permutations with repeats A
in the preimage of W are in bijective correspondence with nondecreasing
partial functions f defined on a subset of indices i ∈ {j|Wj = −1} with the
restriction that for any such i such that f(i) is defined f(i) ∈ Ci.

We can count such sequences in polynomial time by dynamic program-
ming as follows:

1. we start with an empty table and go in increasing order of indices i.

2. We count partial functions by their largest value.

3. Given a possible value Ai in the list Ci, its count is one plus the sum
of all the counts of sequences ending in values of the table less or equal
to Ai taken from previous stages.

4. The output value is one (corresponding to the empty sequence) plus
the sum of all the counts of elements in the table.

Example 5 We illustrate the above dynamic programming algorithm on
three sets (without necessarily corresponding to packet sequences), A1 =
{1, 2}, A2 = {2, 3}, A3 = {3, 4}. The table corresponding to counting the
partial functions is displayed in Figure 2.

Stage index count

1 1 1

1 2 1

2 2 3
2 3 3

3 3 9
3 4 9

TOTAL - 27

Figure 3: The dynamic programming counting algorithm on data from Ex-
ample 6
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It is clear that the dynamic programming runs in polynomial time, thus
completing the proof of Theorem 2.

2

5 Applications to RESTORED

5.1 Explaining Restored behavior

The result we just proved allows the reinterpretation of results in [8, 6]. In
that paper it was shown experimentally that Restoredis able to recover
several measures of quality of service, among them the following metric [9].
For ease of presentation, our version of the metric is presented in the case
of permutations (i.e. sequences with no repeats or packet losses). See [9]
for the general definition:

Definition 7 Reorder Density (RD).

Consider an implementation-dependent parameter DT that is a positive
integer or ∞. Given a permutation π we define the reorder density of π as
the distribution of displacements π[i] − i, restricted to those displacements
in the range [−DT,DT ].

In general it is simply unreasonable to expect to perfectly recover an
arbitrary measure W of reordering. The reason is that Restored replaces
an input sequence A with a sequence B from the preimage F−1(F(A)).
unless W is mostly constant on set F−1(F(A)) one cannot expect that the
two values of W for the original and reconstructed sequence will be identical.

The above discussion motivated the following definition from [6] (stated
here for simplicity for ≡FB):

Definition 8 A metric M is consistent with respect to ≡FB if for any two
ID sequences A and B, A ≡FB B =⇒ M(A) = M(B). In other words, a
consistent measure M takes equal values on equivalent sequences.

Example 6 By equation (1), every measure defined in terms of the time
series of parameter RcwWindow (e.g. the average value of this parameter)
is consistent with respect to ≡FB.

In particular, since Restored (in the form used in [8, 6]) guarantees
that, on sequence A it will reconstruct a sequence R(A) such that R(A) ≡FB
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A, it is not really that surprising that Restored should be able to capture
any metric consistent with respect to ≡FB.

The reason that we found the experimental results from [8] somewhat
paradoxical is that RD is an example of an inconsistent measure (at least
on “theoretical” examples) according to the terminology of Definition 8.

Observation 2 If A = (4 3 2 1) and B = (4 2 3 1) then the distributions

of displacements are D(A) =

(
-3 -1 1 3
1/4 1/4 1/4 1/4

)
and D(B) =(

-3 0 3
1/4 1/2 1/4

)
, respectively. It is easy to see that, no matter how we

set the parameter DT to either a positive integer or ∞, the truncated ver-
sions of distributions D(A), D(B) are going to be different. Thus A ≡FB (B)
but D(A) ̸= D(B), which means that measure RD is inconsistent indepen-
dently of the value of threshold parameter DT.

However, Theorem 1 forces us to reevaluate the real-life applicability of
this simple example: since the vast majority of traces used in the experimen-
tal benchmarking from [8] had SUS ≤ 3 the “theoretical” inconsistency of
RD from Observation 2 is less stringent “in practice”: in particular since no
two permutations map to the same reordering pattern and, crucially, repeat
packets are discarded before computing RD [9], it is no longer that surprising
that RD could be largely consistent “in real life”, even though theoretically
inconsistent.

5.2 Redesigning RESTORED

As hinted in [8] (and witnessed by our subsequent papers [7], [6]) mapping
M was by no means the only many-to-one mapping we tried in developing
Restored. Indeed, in these subsequent papers we mathematically ana-
lyzed a version of the function FB, that only takes into account effectively
buffered packets in the definition of buffer size, and showed that it has good
properties.

More generally, the conditions we want any good compression methods
for reordering patterns F to satisfy are the following:

1. Mapping F has to be easily computable.

2. Mapping F should have many preimages of a given coded sequence,
especially those arising from “real-life” observations.
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3. Mapping F has to be invertible in polynomial time: there has to be a
polynomial time algorithm that, given a coded sequence X computes
a preimage A ∈ F−1(X).

4. A stronger form of condition 3. requires to be able to sample in
polynomial time (almost) uniformly from the set of preimages A ∈
F−1(X) of a coded sequence X.

The first condition ensures good compression. The second one ensures
computational tractability. Condition 4 (and its weaker version 3) is used
in the regeneration phase of Restored .

In [5] we have shown that mapping FB satisfies condition 3. Stronger
condition 4 is also true (but this was not explicitly stated /shown in that
paper there), since sampling matchings in a bipartite graph has a fully
polynomial randomized approximation scheme. The sampling algorithm is
too complicated to be of practical use, and was never implemented as part
of Restored .

For mapping FB (that somewhat differs from FB on sequences with
repeat packets), the following simple Corollary of Theorem 2 shows that the
situation is much better: a simple sampling algorithm can be obtained by
adapting the algorithm used to count preimages:

Corollary 3 There exists an algorithm that, given a sequence of integers P

generates a random permutation with repeats A ∈ M
−1

(P ) and SUS(A) ≤
3.

Proof: In the proof of Theorem 2 we counted permutations with repeats
with the desired properties by mapping them bijectively to nondecreasing
partial functions with a special structure.

The problem of counting such nondecreasing partial functions is easily
seen to be self-reducible: if i is the smallest index with Pi, such a partial
function f is in one of the following situations:

• f is undefined at i, and in bijective correspondence with a partial
function on the (smaller) domain obtained by eliminating i. We can
use the previous algorithm to compute P∅, the number of such partial
functions.

• f assumes a value λ ∈ Ci. In this case the restriction of f to the
domain obtained by eliminating i is a similar object (a nondecreasing
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partial function with a similar special structure). For every λ we can
use the previous algorithm to compute Pλ, the number of such partial
functions.

Now it’s easy to generate a random nondecreasing partial function f :

1. f will be undefined at i with probability P∅
P∅+

∑
λ Pλ

.

2. f will assume a value λ ∈ Ci with probability Pλ
P∅+

∑
λ Pλ

.

3. Quantities P∅, Pλ can be efficiently computed using the dynamic pro-
gramming algorithm from the proof of Theorem 2.

2

In conclusion, using mapping FB is preferred to mapping FB for ease
of sampling reasons. This was not clear at the time we did the experiments2

but is now in retrospect.
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