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ABSTRACT
We study worst-case fairness of a TU-cooperative game, the
stable imputation that is most dissimilar to a normative
standard of fairness. Motivated by welfare economics, simi-
larity is quantified using information-theoretic divergences.
Worst-case fairness aims to parallel the spirit of the price
of anarchy from noncooperative game theory in a coopera-
tive setting, quantifying how much deviation from fairness
is compatible with coalitional rationality.

Computing our measure is tractable in weighted voting
games and many classes of coalitional skill games, but NP-
hard in induced-subgraph games and a class of task-count
coalitional skill games. In these latter cases we investigate
the performance of several approximation algorithms, show-
ing that they yield constant approximately optimal solu-
tions. We also upper bound the performance of a Reverse
Greedy algorithm on general convex games in terms of two
game-specific constants.

Categories and Subject Descriptors
I.12.11 [Artificial Intelligence]: Distributed Artificial In-
telligence— Multiagent Systems; F.2.2 [Analysis of algo-
rithms and problem complexity]: Nonnumerical algo-
rithms and problems—Computations on discrete structures

General Terms
Theory, Algorithms, Economics

Keywords
cooperative games, worst-case fairness, approximation algo-
rithms

1. INTRODUCTION
Stability and fairness are two central issues in cooperative

game theory. Many of the various solutions proposed em-
phasize one or the other aspect: the core is a prototypical
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example of a stability-oriented approach, while the Shap-
ley value [33] is the classical, well-understood approach to
fairness.

Of these two requirements stability is usually the much
less demanding requirement: As long as one can guarantee
(perhaps as a result of exogenous interventions such as sub-
sidies [6] or taxation [41] ) that stable imputations exist, to
guarantee that such a solution will eventually be chosen one
only needs to assume some form of individual or coalitional
rationality. In contrast, imposing a normative solution (such
as the Shapley value) requires a number of presuppositions:

(a). that the given solution is easy to compute (a state-
ment that is not always true [21]).

(b). that it is the determinate outcome of a (centralized)
noncooperative negotiation mechanism, an assumption that
is often problematic in a distributed multiagent setting lack-
ing such a regulating mechanism.

(c). that it was not subject to strategic behavior such as
manipulation [5, 42], nor was it affected by systemic issues
such as agent failures [8, 7].

(d). that the coalition formation process did not preclude
itself (as it may be in the case of successively enlarging coali-
tions) the adoption of such a solution.

(e). and, finally, that no prior social norms exist in the
agent population that favor alternative outcomes [27].

The above objections are, of course, not specific to the
Shapley value, and the aim of the previous discussion was
suggesting a replacement by any alternative concept: it sim-
ply may be the case that no normative approach is appro-
priate in all circumstances. Assuming stability requires us,
however, to confront the issue of solution multiplicity.

In noncooperative game theory the seminal work on the
price of anarchy (PoA) [29, 35, 34, 36] provides a powerful
alternative to equilibrium selection. Instead of advocating
any particular refinement of Nash equilibrium, the price of
anarchy measure takes a pessimistic perspective, quantify-
ing the degradation in overall performance due to uncoor-
dinated behavior, measured on the worst equilibrium. This
circumvents the problem of equilibrium selection by provid-
ing (pessimistic) guarantees valid for any rational solution.

In this paper we propose an approach with a similar phi-
losophy for TU-cooperative games. It is fairness in allo-
cations, rather than total coalition payoff that is solution-
dependent in this setting. Rather than attempting to pos-
tulate any particular ”fair cost division”, we investigate the
departure from fairness of an arbitrary “rational” cost allo-
cation (where in this paper we define rationality as member-



ship in the core). We measure departure from fairness by
employing a parametric family of measures based on varia-
tions on the concept of Rényi entropy, fruitfully used before
as measures of inequality in welfare economics [19].

The structure of the paper is as follows: in Section 2 we
discuss related work. In Section 3 we overview some rele-
vant concepts in cooperative game theory, information the-
ory and combinatorial optimization. We then introduce in
Section 4 our parametric family of measures of fairness. In
Section 5 we discuss the computational complexity of com-
puting worst-case-fairness, highlighting both tractable and
NP-hard cases. In Section 6 we present a general approach
for obtaining approximately worst-case fair solutions in a
convex game, via a “reverse greedy” algorithm whose per-
formance depends on two game-specific constants. We then
particularize our discussion to the class of induced subgraph
games of Deng and Papadimitriou [21].

2. RELATED WORK
We are, of course, inspired by the significant amount of

work on the price of anarchy [29, 35, 34, 36, 17]. This line of
work has inspired a number of related indices that quantify
various aspects of noncooperative games. We cite just one
such example, the work of Anshelevich et al. [2] on the price
of stability, that considers the best, rather than the worst
Nash equilibrium.

Still in a noncooperative setting, some concepts in the lit-
erature address issues related to cooperation, bringing them
closer to the scope of the present work. Examples include
coalition-proof Nash equilibria [10],[11] or the price of strong
anarchy [1], which restricts the analysis of system behavior
to Nash equilibria resilient to deviations by coalitions, as
well as the price of collusion [26], which measures the inef-
ficiency of the worst possible partition of the set of players.
Perhaps the most relevant for this work is the notion of Price
of Democracy introduced by Chalkiadakis et al. [15]. They
attempt (just as we do) to provide a PoA-like measure for
cooperative games. However, their setting is different: they
explicitly model payoff allocation as a bargaining process
(game) and consider the loss in performance in the coali-
tions arising from subgame perfect equilibria of this game.

Finally, the study of non-cooperative justifications of coop-
erative game theory concepts is obviously related. We refer
the reader to Section 7.1.2 of [16] for a brief outlook.

In contrast to all these results in non-cooperative game
theory, our framework makes minimal assumptions with re-
spect to coalition formation and payoff division. Coopera-
tion is not an issue in the examples we discuss: all players are
interested in joining the grand coalition (though our frame-
work could be extended to the case of multiple coalitions as
well), and no inefficiency arises. What may arise, though, is
inequality in payoff division.

3. PRELIMINARIES AND NOTATION
All logarithms considered in this paper are base two. We

will work in the framework of Cooperative Game Theory (for
a recent survey from an algorithmic perspective see [16]). We
assume knowledge of basic concepts from this literature. We
also assume basic knowledge of computational complexity [4]
and approximation algorithms [40].

A TU-cooperative game is a pair Γ = (N, v), where N is
a set of players (usually N = [n] := {1, 2, . . . , n} for some

n ≥ 1) and v : P(N) → R+ is a value function. We will
assume that v is monotone nonnegative, i.e. v(∅) = 0, [A ⊆
B]⇒ [v(A) ≤ u(B)]. Game Γ is convex if the value function
v is supermodular, that is it satisfies v(A∪B) + v(A∩B) ≥
v(A) + v(B) for all A,B ⊆ N . When the sign of the in-
equality is reversed function v is called submodular and the
corresponding game is called concave.

An imputation is a function x : N → R+ such that
x(N) = v(N). Imputation x is blocked by coalition S ⊆ N
if
∑
i∈S xi < v(S). The core of game Γ is the set of all im-

putations that are not blocked by any coalition. A solution
concept q [3] is a function that assigns to every coopera-
tive game Γ an imputation q = q(Γ). It is a core concept
if q(Γ) ∈ core(Γ) for every game Γ such that core(Γ) 6= ∅.
Basic examples of solution concepts will be U , the uniform

vector U(i) = v(N)
|N| for all i ∈ N, as well as the Shapley value

Sh and the nucleolus Nu [16]. In concave games the core is
the convex hull of the marginal vectors xπ, π ∈ Sn and the
Shapley value is the barycenter of this polyhedron.

We compute our measures on three classes of games:
(a) weighted voting games (WVG[24]). A WVG is speci-

fied by a set of n ≥ 1 players, a corresponding set of noneg-
ative player weights w1, w2, . . . , wn adding up to 1, and a
threshold T . Coalition S ⊆ [n] is winning (v(S) = 1) if∑
i∈S wi ≥ T and losing (v(S) = 0) otherwise. Player i is a

veto player if all winning coalitions must include i.
(b). coalitional skill games (CSG[9]). A CSG is speci-

fied by a set of agents, I = {1, . . . , n} , a set of skills S =
{s1, . . . , sk}, a set of tasks T = {t1, . . . , tm} and a task value
function u : P(T ) → R+. We assume that u is monotone
nonnegative, i.e. u(∅) = 0, [T1 ⊆ T2]⇒ [u(T1) ≤ u(T2)].

Each agent i has a set of skills Si ⊆ S. Each task tj
requires a set of skills Tj ⊆ S. For C ⊆ I, S(C) = ∪j∈CSj is
the set of skills of coalition C. Coalition C can perform task
tj if Tj ⊆ S(C) . The set of tasks coalition C can perform
will be denoted by T (C). The value function v(C) is defined
as v(C) = u(T (C)).

In a single task CSG (STSG) T = {S} hence v(C) = 1 if
S(C) = S, 0 otherwise. Γ is a task-count CSG (TCSG) if
u(T ′) = |T ′| and a task-count CSG with threshold (TCSG-T)
if there exists a threshold k such that u(T ′) = 1 if |T ′| ≥ k,
0 otherwise. In a weighted task-count CSG with threshold
(TCSG-T) the tasks are weighted by some system of non-
negative weights w1, . . . wm and the definition of u is changed
to u(T ′) = 1 if

∑
l∈T ′ wl ≥ k, 0 otherwise.

(c). induced subgraph games (IS-G [21, 38, 16]). An IS-
game is specified by a connected loopless graph G = (V,E)
and a set of integer weights (wi,j)(i,j)∈E on the edges. Ver-
tices of G are interpreted as players. Given set S ⊆ V , the
value of coalition S is v(S) =

∑
(i,j)∈E,i,j∈S wi,j . We will as-

sume that weights are nonnegative and for any vertex v ∈ V,
the sum of weights of its adjacent edges is positive.

One can normalize every vector of nonnegative values X
to a probability distribution. Without risk of confusion we
will denote by X the resulting distribution as well. Given
discrete random variable X with probability mass function
p = (pi)i and real number λ > 0, λ 6= 1 the Rényi entropy of
order λ of X is defined [18] as: Hλ(X) = 1

1−λ log
(∑

i p
λ
i

)
.

We complete this definition for λ = 1 by the usual Shannon
entropy H(X) = H1(X) = −

∑
i pi log pi. Let P = (pi) and

Q = (qi) be two distributions and λ > 0. The Rényi diver-
gence of order λ of P and Q is defined as Dλ(P ‖ Q) =

1
λ−1

log
(∑

i p
λ
i q

1−λ
i

)
. The discrete Rényi relative entropy of



order λ of P,Q is defined as hλ[P,Q] = 1
1−λ log

(∑
i q
λ−1
i pi

)
+

1
λ

log
(∑

i q
λ
i

)
− 1

λ(1−λ) log
(∑

i p
λ
i

)
. It satisfies the discrete

Gibbs inequality:

Lemma 1. We have hλ[P,Q] ≥ 0.

Lemma 1 is the discrete version of a result from [30]. Its
proof will be given in the full version.

We complete the two definitions above in the special case
λ = 1 by the relative Shannon entropy or Kullback-Leibler
divergence, defined as: D(P ‖ Q) = h1[P,Q] =

∑
i pi log pi

qi
.

Though they do not generally yield metrics, entropy and
divergence measures have a significant history (e.g. [39]) of
use, in particular as indicators of ”similarity” or ”distance”
between two probability distributions. A particularly im-
portant application of such information-theoretic tools is in
the area of inequality measurement [37, 19]. This is what
motivates the use of Rényi divergences as objective function
to maximize in our measure, that we define next.

4. WORST-CASE FAIRNESS
OF A TU-COOPERATIVE GAME

We now define the main object of interest, a parametric
family of measures of fairness for cost allocations of a TU-
cooperative game Γ = (N, v). They are parameterized by

(a). a positive real λ.
(b). A set St(Γ) of solutions deemed ”stable”. In all ex-

amples considered in this paper St(Γ) = Core(Γ).

(c). a solution concept q, yielding vector q(Γ) ∈ R
|N|
+ . In-

tuitively vector q(Γ) represents a baseline ”standard of fair-
ness” to which all other possible imputations are held. Our
measures attempt to evaluate the largest possible discrep-
ancy between a stable imputation u ∈ St(Γ) and q(Γ).

These considerations finally enable us to give the defini-
tion of worst-case fairness: Given cooperative game Γ =
(N, v) and real number λ > 0 the λ-worst-case fairness of
game Γ with respect to (St, q) is defined as

OPTλ(Γ, St, q) = sup{Dλ(x||q(Γ)) : x ∈ St(Γ)}. (1)

Generally we will not be content with only computing
the optimal value in equation (1), but instead also seek to
compute (if possible) a vector W (Γ) that realizes equality
Dλ(W (Γ)||q(Γ)) = OPTλ(Γ, St, q). Such a W (Γ) will be
called a λ-worst-case fair imputation of Γ.

The definition in equation (1) obviously depends on the
choice of q. Several special cases make sense:

(a). strictly egalitarian worst-case fairness: q(Γ) is the
uniform vector U . Though somewhat controversial since it
requires a very strong form of equality, the study of this mea-
sure makes sense at least from a mechanism design point of
view: To give just one example, in the case of convex/concave
games, particularly interesting examples of imputations in
the core arise from group-strategyproof mechanisms or, equiv-
alently, cross-monotonic sharing schemes (see [31] and Chap-
ter 15 of [32]). Requiring cross-monotonicity yields a “plau-
sible notion of equity” [28]. A natural question related to the
previous quote is how large a variation in payoffs is compat-
ible with the use of cross-monotonic schemes. The strictly
egalitarian WCF offers a pessimistic estimate of this amount.

(b). marginalist worst-case fairness: in this case q is (the
probability distribution obtained from) the Shapley value.

(c). lexicographic worst-case fairness: q is (the probability
distribution obtained from) the nucleolus of the game.

A B

C

2

4 6
core(G) :


x+ y + z = 12
x+ y ≥ 2
x+ z ≥ 4
y + z ≥ 6
x, y, z ≥ 0.

Figure 1: (a) An IS game with three players; (b) Its
core.

(d). egalitarian worst-case fairness: in this case q corre-
sponds to the egalitarian solution of Dutta and Ray [23].
We will not study this measure in the present paper.

Worst case fairness is obviously easy to compute when
(i). The baseline concept q(Γ) is tractable. (ii). a witness
W (G) is easily computable. We will limit ourselves in this
paper to instances where condition (i). holds, so that the
(in)tractability of computing the worst-case fairness is not
due to the intractability of the baseline concept.

Example 1. Consider the IS-game Γ with three players
presented in Figure 1(a). The total payoff to be shared be-
tween players is 12 = 2 + 4 + 6. The core of Γ is given in
Figure 1(b). The Shapley value is [21] Sh = (3; 4; 5). Fur-
thermore, by simple symbolic computations one can show
the following: (a). There are 57 integral imputations in the
core. Of these six are extremal (i.e. corners of the polyhe-
dron geometrically describing the core). (b). For λ = 1 there
are two WCF imputations in the core for the strictly egal-
itarian WCF: (2; 0; 10) and (0; 2; 10). Worst-case fairness
is OPT1(Γ, U) ∼ 0.934. (c). Also for λ = 1 there exists
an unique WCF imputation for the marginalist WCF : X =
(4; 8; 0). The corresponding WCF is OPT1(Γ, Sh) ∼ 0.805.
Thus employing perfect equality as our standard of fairness
of imputations in the core is (in this game) more pessimistic
than using the Shapley value.

5. THE COMPUTATIONAL COMPLEXITY
OF WORST-CASE FAIRNESS

In this section we study the computational complexity of
computing the WCF of a TU-game. For technical reasons
(Rényi entropy is only concave for λ ≤ 1) our intractability
results will be stated under the condition 0 < λ ≤ 1. On
the other hand all positive results (including those related
to approximate solutions) deal with the general case λ > 0.

First we provide two settings where computing the WCF
is tractable, that of weighted voting games and the one of
coalitional skill games.

Theorem 1. Let Γ = ([n], {wi}i∈[n]) be a weighted voting
game with nonempty core. Without loss of generality assume
that players 1, 2, . . .K are all the veto players (to have a
nonempty core necessarily K ≥ 1).

Then for every λ > 0 vector P = (1, 0, . . . , 0) is a WCF-
imputation for the (strictly egalitarian/lexicographic) λ-worst
case fairness in Γ.

Theorem 2. Let Γ = (I, S, T, u) be a STSG (TCSG-
T,WTSG-T) game with nonempty core. Without loss of gen-
erality assume that players 1, 2, . . .K are all the veto players
(to have a nonempty core necessarily K ≥ 1). Then for ev-
ery λ > 0 vector P = (1, 0, . . . , 0) is a WCF-imputation for
the strictly egalitarian λ-worst case fairness in Γ.



Moreover, if Γ is a TCSG-T game then the same conclu-
sion holds for the lexicographic worst-case fairness of Γ.

Proof. The two theorems above have a common proof,
based on the similar characterization of the core of weighted
voting games [24] and coalitional skill games [9]: an impu-
tation x = (x1, x2, . . . , xn) is in the core if it distributes zero
value to every non-veto player. That is

x1 + x2 + . . .+ xK = 1 and xK+1 = . . . = xN = 0.

On the other hand, for WVG and TCSG-T games the nucle-
olus of Γ is the vector Nu(Gamma) = ( 1

K
, . . . , 1

K
, 0, . . . , 0).

As for all vectors x in the core xi = 0 for nonveto play-
ers i, and since vectors U,Nu(G) are constant on their re-
striction to veto players, maximizing divergences Dλ(x||U),
and Dλ(x||Nu) respectively, is easily seen to be equivalent
to minimizing the entropy of the distribution of payoffs re-
stricted to veto players x = (x1, x2, . . . , xk). Obviously, vec-
tor P is one way to accomplish this task.

The case of TCSG-games is rather different: while of the
three target concepts U, Sh,Nu only U is clearly tractable
(Sh is ]P-complete and the complexity of Nu is open [9]),
computing even the strictly egalitarian WCF is NP-hard:

Theorem 3. For any 0 < λ ≤ 1 the following decision
problems is NP-hard: Given a TSCG game Γ and a constant
η > 0, does there exist any imputation x ∈ core(Γ) with
Dλ(x, U) ≥ η ?

Proof. Consider the following subclass of TCSG games:
a pure skill CSG game (PCSG) is a TCSG game for which
T = S. We will show that the problem above remains NP-
hard even for PCSG games.

Indeed, every PCSG game Γ is easily seen to be con-
cave1. An imputation of Γ may (fractionally) divide each
skill among players who posess it. By stochastic domina-
tion, to maximize Dλ(X||U) (i.e. minimize Entλ(X) (=
log(n) −Dλ(X||U)) one only needs to consider integral di-
visions (each skill is assigned to a player). This is essentially
the problem Minimum Entropy Set Cover (MESC [25]). Prob-
lem MESC is NP-hard (the general case 0 < λ ≤ 1 is dealt
with essentially in [12]).

Finally, in IS-games the nucleolus is equal to the Shapley
value, the latter one being easily computable [21]. Comput-
ing worst-case fairness in IS games, both strictly egalitarian
and marginalist, is computationally intractable:

Theorem 4. For any 0 < λ ≤ 1 the following decision
problems are NP-hard:

(a). Given an IS-game Γ = (G,w) with nonnegative weights
and constant η > 0, does there exist any imputation
x ∈ core(Γ) with Dλ(x, U) ≥ η ?

(b). Given an IS-game Γ = (G,w) with nonnegative weights
and constant η > 0, does there exist any imputation
x ∈ core(Γ) with Dλ(x, Sh) ≥ η ?

Note that we have framed our intractability results above
in terms of general real-valued constants λ, η. With only
additional notational inconvenience we can make all these
constants rational: the set of potentially optimal solutions
to all instances of the games we have considered above is
finite and the objective values ”well-spaced”.
1this is not true for general TCSG games

6. APPROXIMATION ALGORITHMS
Given Theorem 4, we need to give up (at least in IS-

games) the hope of computing efficiently computing WCF-
imputations, and instead resort to approximation algorithms,
that will provide approximately worst-case fair imputations.
Unlike most cases in the theory of approximation algorithms
[40], but similar to other problems in entropy minimization
[14], our approximation guarantees will be additive: given
constant ∆ > 0, an imputation X will be ∆-approximately
worst-case fair if

Dλ(X||q(Γ)) ≥ OPTλ(Γ, St, q)−∆

and we will try to find imputations minimizing ∆.
It is customary when dealing with approximation in sub-

modular optimization to employ the GREEDY algorithm,
that enlarges the coalition by selecting the individual with
the largest marginal increase of the value function v.

For instance in PCSG-games, taking into account the con-
nection with MESC from the proof of Theorem 3, a rel-
atively straightforward adaptation of the argument in [12]
(for 0 < λ ≤ 1), or as an application of results in Section 7
to the dual of the game (this argument works for all λ > 0)
yields the following result (proved in the full version of the
paper):

Theorem 5. Let λ > 0 and Γ be a PCSG-game. Then
the GREEDY algorithm produces a 1

λ−1
log(λ)-approximately

worst-case-fair imputation for the strictly egalitarian WCF
in Γ. The approximation guarantee is optimal unless P=NP.

On the other hand, for games (such as IS-games) that are
supermodular, using the GREEDY algorithm doesn’t quite
make sense: assigning the first element i its payoff v({i})
does not take into account the fact that the contribution of
player i increases with the coalition, being largest for the
coalition N \{i}. In other words v({i}) ≤ v(N)−v(N \{i}),
and, to create an imbalanced allocation we should assign
player i its utopia payoff (that is the right-hand quantity,
rather than the left-hand). This leads to considering the
Reverse Greedy algorithm displayed below.

Reverse Greedy:

INPUT : A game Γ = (N, v)
y := (0, 0, . . . , 0)
A0 := N , r:=1
While ∃e ∈ Ar−1 with v(Ar−1)− v(Ar−1 \ {e}) > 0

choose ir ∈ Ar−1 that maximizes
v(Ar−1)− v(Ar−1 \ {ir})
(breaking ties arbitrarily)
yir := v(Ar−1)− v(Ar−1 \ {ir})
Ar := Ar−1 \ {ir}, r + +

OUTPUT : Imputation Y = (yi)i∈N .

Figure 2: Algorithm Reverse Greedy.

Example 2. Consider the setting of Example 1. Algo-
rithm Reverse Greedy computes one of the covers (0; 2; 10) or
(2; 0; 10) (optimal for strictly egalitarian WCF). The com-
puted imputation depends on the tie-breaking rule between
the first two nodes. Indeed, the algorithm first selects node



C, allocating its utopia value 4+6 = 10. Then it selects one
of A and B in an arbitrary order.

For IS-games we will consider an alternate approximation
rule: we will call an imputation BI biased if for every edge
(i, j) ∈ E it distributes all the weight wi,j to one of the
nodes i, j, when w(i) 6= w(j) to the the node among i, j
with larger value of w(·). Clearly, a biased imputation is
easy to compute.

Example 3. In the setting of Examples 1, 2, imputation
(0; 2; 10) is the only biased imputation.

7. ALGORITHM REVERSE GREEDY IN AR-
BITRARY CONCAVE GAMES

Our main result yields an upper bound on the performance
of Algorithm Reverse Greedy in approximating the strictly
egalitarian worst-case fairness in an arbitrary convex TU-
game. This easily yields (via Lemma 2 below) a weaker
additive guarantee for any solution concept (we will take
this route in the next section)

To describe our guarantees we introduce some notation:

1. We will denote by l the number of iterations of the
Reverse Greedy algorithm.

2. For 1 ≤ r ≤ l denote by ir the element chosen at stage
r of the algorithm. Let Wr = {i1, . . . , ir}, Ar = U \Wr

and ∆r be the value of element yir set at stage r.

We next define a quantity, the ”impact of j on ir”, that
will play a fundamental role in our results below: For any
1 ≤ r ≤ l we define the impact of j on ir by

ajr = [v(Ar−1)− v(Ar)]− [v(Ar−1 \ {j})− v(Ar \ {j})] .
(2)

Proposition 1. For any 1 ≤ r ≤ l and 1 ≤ j ≤ m we
have ajr ≥ 0.

Proof. Note that Ar−1 = Ar∪{ir}. Thus when j = ir or
ir 6= j 6∈ Ar−1 the second term is zero, and the result follows
directly from the monotonicity of function v. Assume now
that ir 6= j ∈ Ar−1, thus j ∈ Ar. Define S = Ar and
T = Ar−1 \ {j}. Then S ∪ T = Ar−1, S ∩ T = Ar \ {j}, and
we employ the supermodularity of function v.

Given an optimal solution X = (Xj), we will break it
down into a large number of components Zjr ∈ Z, 0 ≤ Zjr ≤
ajr as in equation (3) below:

Xj =

l∑
r=1

Zjr , ∀j ∈ [m] (3)

Intuitively Zjr is the part of the optimal solution Xj that
can be assigned to cover “set ir”. This explains the newly
introduced constants: first, one cannot allocate more than
the total of Xj . Second, one cannot allocate to any “set ir”
more than “its intersection with Xj”.

Definition 1. Given concave game Γ Let α = α(Γ) the
smallest and β = β(Γ) the largest positive value such that
for some cover X in the core minimizing Fairλ(Γ), one can
define quantities Zjr , so that for any r ∈ [l]:

β ·∆r ≤
m∑
j=1

Zjr ≤ α ·∆r. (4)

Proposition 2. For any convex game Γ we have

β(Γ) ≤ 1 ≤ α(Γ).

Proof. We prove first inequality, the second is similar.
Sum equations (4) for r = 1, . . . , l. The left-hand side is

β(Γ)
∑l
r=1 ∆r = β(Γ)f(N), by ReverseGreedy.

Similarly, the right-hand side is
∑l
r=1

(∑m
j=1 Z

j
r

)
=∑m

j=1

(∑l
r=1 Z

j
r

)
=
∑m
j=1Xj = f(N). The result follows.

Our main result gives an upper bound applicable to all
convex cooperative games:

Theorem 6. Given a convex cooperative game Γ the Re-
verse Greedy algorithm produces a cover RG satisfying

0 < λ < 1⇒ Hλ(RG) ≤ Hλ(OPT ) +
1

λ− 1
log(βλ). (5)

λ > 1⇒ Hλ(RG) ≤ Hλ(OPT ) +
1

λ− 1
log(αλ). (6)

Corollary 1. The cover RG produced by the ReverseG-
reedy algorithm is 1

λ−1
log(βλ)-approximately WCF with re-

spect to U for 0 < λ < 1 and 1
λ−1

log(αλ)–approximately
WCF with respect to U for λ > 1

Proof. Follows directly from Theorem 6.

Observation 1. By Proposition 2 both constants in the
upper bounds of Theorem 6 are nonnegative. On the other
hand, if at least one of parameters α or β are equal to 1
then we can complete the result to the case λ = 1 by taking
the limit λ → 1, yielding the conclusion that RG is log(e)-
approximately fair with respect to U for λ = 1.

A more limited connection between divergence and en-
tropy holds even in the general case. Given distribution
R = (ri), denote rmax = max{rj : j ∈ supp(R)}, rmin =

min{rj : j ∈ supp(R)} and define ν(R) = log
(
rmax
rmin

)
, the

nonuniformity of distribution R.

Lemma 2. Let P,Q,R be probability distributions and λ >
0. Then |Dλ(P ||R)−Dλ(Q||R)−(Hλ(Q)−Hλ(P ))| ≤ ν(R).

The proof of Lemma 2 is deferred to the full version. We
will apply it to IS-games below.

8. APPROXIMATE WORST-CASE FAIRNESS
OF INDUCED SUBGRAPH GAMES

In this section we first particularize our main result to
the class of IS-games: we show that for any such game α =
β = 1. On the other hand we study the performance of
using biased imputations, showing that in some cases (for
λ ∼ 1) the guarantee is better than the one available for the
ReverseGreedy algorithm:

Theorem 7. Given IS game Γ = (G,w) and λ > 0

(a). α(Γ) = β(Γ) = 1.

(b). Any biased imputation BI satisfies

Hλ(Sh)−Hλ(OPT ) ≤ 1

λ
[Hλ(Sh)−Hλ(BI)] + 1. (7)



Corollary 2. In the setting of the previous result RG
is 1

λ−1
log(λ)-approximately worst-case fair with respect to

U and 1
λ−1

log(λ) + ν(Sh)-worst case fair with respect to
Sh.

On the other hand BI satisfies

Dλ(BI ‖ Sh) ≥ λ ·OPTλ(Γ, Sh)− (1 + λ) · ν(Sh)− λ (8)

Proof. Directly from Theorem 7 and Lemma 2.

For marginalist worst-case fairness the second bound may
be slightly better when λ ≈ 1 and ν(Sh) ≈ 0 . Indeed, in
the limit λ→ 1 term 1

λ−1
log(λ) tends to log(e) ≈ 1.442 . . .,

while λ ≈ 1. The best of the two guarantees may depend on
the precise value of constant λ (and, of course, other features
of the instance at hand).

9. DELAYED PROOFS

9.1 Proof sketch of Theorem 4
For reasons of space the proof of this result is only out-

lined. A complete argument is deferred to the full version.
The first ingredient of our proof is the characterization of

imputations Z = (z1, z2, . . . , zn) in the core of an IS game:

Proposition 3. z is in the core of Γ if and only if there
exist real numbers ri,j are real numbers in the range 0 ≤
ri,j ≤ 1 with ri,j + rj,i = 1 so that

zi =
∑

(i,j)∈E

ri,jw(i,j) (9)

This claim is an easy consequence of the characterization
of the core of IS games [21], and a special case of a more
general paradigm [20].

Lemma 3. Let X = (xi)i be an optimal imputation in
game Γ. Consider a reordering σ of the set of vertices so
that xσ(1) ≥ xσ(2) ≥ · · · ≥ xσ(n). Then coefficients rk,l from
formula (9) satisfy: rσ(i),σ(j) = 1, if i < j, 0 otherwise, for
all i, j ∈ V.

Proof. Consider an arbitrary edge (k, l) ∈ E, k = σ(i),
l = σ(j). Assume that i < j (the opposite case is easily
handled via relation rk,l + rl,k = 1) and rk,l < 1. Define for
notational convenience 0 < ε < 1 by ε = rl,k = 1−rk,l. With

this choice further define X̃ = (x̃1, . . . , x̃k, . . . , x̃l, . . . , x̃n)
where x̃k = xk + εwk,l, x̃l = xl − εwk,l, and x̃r = xr for all
other r 6= k, l. Note that x̃ and x differ just on components
k, l. By the previous remark x̃ is an imputation in the core.

It is easy to see that for all λ > 0 we have Hλ(X) >

Hλ(X̃), which contradicts the hypothesis that X had the
lowest Rényi entropy.

Another way to state Lemma 3 is that any imputation
of minimal entropy corresponds to ”orienting” the weighted
edge (i, j) towards one of the nodes, that is assigning one of
the nodes the entire weight wi,j .

The proof of the two parts of Theorem 4 are fairly sim-
ilar, and mirror the NP-hardness proof (given in [13]) of a
problem called minimum entropy orientation (MINEO).

(a). By Lemma 3 our problem is equivalent (in the sene
of having the same optimum, though the set of feasible so-
lutions may vary) to a weighted version of MINEO.

C

F

D E

A B

Figure 3: The gadget in [9] and our reductions.

The reduction in [13] encodes an instance Φ of an NP-
complete variant of problem 1-in-3 SAT into a graph G =
(V,E). Formula Φ (corresponding to a set cover problem)
has ([13]) q ≥ 1 variables u1, u2, . . . , uq and an equal num-
ber of clauses. Each variable occurs in exactly 3 clauses of
Φ, each clause has length exactly 3. Graph G is constructed
as the union of q ”gadgets” (each having six vertices as dis-
played in Figure 3 - see [13]) and q extra nodes. It has
m = 12q edges.

We may read the existence of a satisfying assignment for

Φ from the value of a minimum entropy orientation
−→
H :

Lemma 4. The Shannon entropy of the distribution cor-

responding to an arbitrary orientation
−→
H of G is at least

1
m

(4q log(m/4)+7q log(m/3)+q log(m)) with equality (reached

for some orientation
−→
G explicitly constructed in [13]) if and

only if instance Φ is satisfiable.

The proof of Theorem 4 (a) is a direct extension to the
case λ > 0 of the above result. We replace the Shannon
entropy by the Rényi entropy, i.e. log(n) minus the the
quantity we attempt to maximize, the divergence with the
uniform distribution U . Instead of Claim 2 in [13] we use
the following extension to all values λ > 0, with essentially
the same proof as the original version:

Lemma 5. For any λ > 0, λ 6= 1, the Rényi entropy of

the distribution corresponding to orientation
−→
G (constructed

in [13]) is at most log(m) + 1
1−λ log

(
4λ + 7 · 3λ−1 + 1

)
/12,

with equality if and only if instance Φ is satisfiable.

(b). For simplicity we outline here the case λ = 1. As in
(a) there is no problem extending it to a general λ > 0.

We employ the same reduction from [13] of 1-in-3 SAT
to an instance of the decision problem in Theorem 4 (b):
given instance Φ we construct graph G and explicit constant
µ0 such that for every orientation in G Dλ(H,Sh) ≤ µ0.
Equality can be reached if and only if formula is satisfiable.

What changes is the proof of the correctness of the re-
duction. The nature of the Shapley value forces this: Con-
structed graphG has two types of nodes, those having degree
three and those having degree four. Deng and Papadim-
itriou [21] proved that the Shapley value of an IS-game is
s(i) = 1

2

∑
i6=j wi,j . Thus, in the unweighted IS-game on G

the Shapley node i has Shapley value s(i) = 3
2

if its degree
is three and s(i) = 2 if the degree is four.

The following simple lemma shows how to orient edges
in an arbitrary orientation in order to maximize divergence
with the distribution Sh = (si), where si = s(i)/m.



D A

Figure 4: An edge between vertices with different
degrees.

Lemma 6. Consider an orientation H in graph G and let
A,D be (Figure 4) two connected nodes, one having degree
four, the other degree 3. Let a, d be the indegrees of nodes
A,D not including edge AD. Then if a > d, to max-
imize the Kullback-Leibler divergence of H with Sh, edge
AD should be oriented towards A. Otherwise it should be
oriented towards D.

The next step of the construction in [13] (Claim 1 in that
paper) was to determine the shape of a minimum entropy
(maximum divergence) orientation in graph G on a six-
vertex gadget X. Our proof employs a similar lemma. How-
ever, since in any gadget X the outside node has degree four
and the ”interior nodes” have degree three, we need to be
more precise, and identify in the maximum divergence con-
figuration the degrees of the interior nodes in X and those
of the exterior nodes. We defer a precise statement/proof
of our analog of Claim 1 to the final version. The proof is
not difficult (it uses Lemma 6) but rather long and compu-
tational/cumbersome.

An outcome of the analysis of is the following: in any
orientation H maximizing D(H,Sh) the outdegree of nodes
A,B,C in every copy X of the gadget is either one or two.
Let t be the number of gadgets with indegree 1 (the rest of
them, q − t having indegree two). The corresponding local
configurations of maximal divergence have the form O =
(4, 1, 0), I = (0, 3, 2), if indeg(X) = 1, and O = (4, 3, 0), I =
(0, 1, 3), if indeg(X) = 2.

Finally, Theorem 4 (b). follows from the following

Claim 1. The Kullback-Leibler divergence KL(
−→
G ||Sh) be-

tween any orientation
−→
G and Sh, the probability distribution

corresponding to the Shapley value is at most q
m

(
9 + 2 log 3

2

)
,

with equality if and only if instance Φ is satisfiable.

To prove the claim and the theorem we consider the orienta-
tion H maximizing D(H,Sh) and note that the contribution
of non-gadget nodes to D(H,Sh) is entropy-like (Sh is con-
stant on non-gadget nodes, as all of them have degree three).
The sum of degrees of these nodes is q + t(= (q − t) + 2 · t).
By stochastic domination we maximize D(H,Sh) by making
as many degree three nodes as possible (i.e. b q+t

3
c nodes).

Finally, to obtain the orientation of maximal divergence we
maximize the ”optimal divergence” over t. This happens
for t = 0. That is, just as in the corresponding result in
[13], every copy of the gadget has outdegree 1 and the out-
going edges have to give indegree three to corresponding
non-gadget nodes. This is only possible when formula Φ is
satisfiable .

9.2 Proof of Theorem 6
Denote by OPT = (Xj)j∈[n] and RG = (yi)i∈[n] the opti-

mal solution, respectively the one generated by the Reverse
Greedy algorithm.

For 1 ≤ r ≤ l we will use the shorthand Urj = Xj −

∑r
k=1 Z

j
k and U0

j = Xj . For any fixed j, sequence (Urj ) is

decreasing with r. On the other hand Ur−1
j − Urj = Zjr .

By the greedy choice we infer yir = ∆r with yi = 0 for
other values of i. Starting from A0 = N we have:
∆r ≥ f(Ar−1)− f(Ar−1 \ {j}) = f(N)− [f(N)− f(Ar−1)]+

+ [f(N \ {j})− f(Ar−1 \ {j})]− f(N \ {j}) = f(N)−

−
r−1∑
k=1

[f(Ak−1)− f(Ak)] +

r−1∑
k=1

[f(Ak−1 \ {j})− f(Ak \ {j})]−

− f(N \ {j}) ≥ f(N)− f(N \ {j})−
r−1∑
k=1

ajk ≥ Xj −
r−1∑
k=1

ajk.

At the last step we used inequalityXj ≤ f(N)−f(N\{j}),
which follows from core membership (in)equalities∑

k∈N\{j}Xk ≥ f(N \ {j}) and
∑
k∈N Xk = f(N).

Case λ > 1:
First we use inequality

∑m
j=1 Z

j
r ≤ α ·∆r as follows:

α

l∑
r=1

(∆r)
λ =

l∑
r=1

(α∆r)(∆r)
λ−1 ≥

l∑
r=1

(
m∑
j=1

Zjr

)
∆λ−1
r

Applying the lower bound above on ∆r we get:

l∑
r=1

m∑
j=1

Zjr∆λ−1
r ≥

l∑
r=1

m∑
j=1

Zjr

(
Xj −

r−1∑
k=1

Zjk

)λ−1

=

m∑
j=1

[
l∑

r=1

Zjr(Ur−1
j )λ−1

]
=

m∑
j=1

l∑
r=1

Zjr(Ur−1
j )λ−1 =

=

m∑
j=1

l∑
r=1

(Urj − Ur−1
j )(Ur−1

j )λ−1(∗)

We transform the difference into a sum of ones. As xλ−1

is increasing and U0
j = Xj we can lower bound (*) by:

m∑
j=1

l∑
r=1

Ur−1
j∑

k=Ur
j +1

(Ur−1
j )λ−1 ≥

m∑
j=1

l∑
r=1

Ur−1
j∑

k=Ur
j +1

kλ−1 =

m∑
j=1

Xj∑
k=1

kλ−1

Putting things together, using standard calculus:

α

l∑
r=1

(∆r)
λ ≥

m∑
j=1

 Xj∑
k=1

kλ−1

 ≥ m∑
j=1

Xλ
j

λ
=

1

λ

m∑
j=1

Xλ
j

Taking the logarithm and dividing by 1− λ < 0 yields:

1

1− λ log

(
l∑

r=1

∆λ
r

)
≤ 1

1− λ log

(
m∑
j=1

Xλ
j

)
− 1

1− λ log(αλ)

or, equivalently, by the definition of Rényi entropy:

Hλ(RG) ≤ Hλ(OPT ) +
1

λ− 1
log(αλ)

The proof is similar in the case 0 < λ < 1. We use instead
the definition of β. Also the standard calculus inequality
changes its direction.

9.3 Proof of Theorem 7 (a)
We first reinterpret the result of Lemma 3 as follows: any

optimal solution X = (xi)i corresponds to some ordering σ
of the vertices such that

xi =
∑

(i,j)∈E
σ−1(i)<σ−1(j)

w(i,j).



Lemma 7. Given any IS game (G,w) we have

ajr =

 wir,j , if ir 6= j, (ir, j) ∈ E, j ∈ Ar
∆r, if ir = j
0, otherwise,

(10)

where ∆r is the value computed by the algorithm Reverse
Greedy at stage r.

Proof. A simple application of formulas defining coeffi-
cient ajr: in IS-games for any set S ⊆ V , v(S) =

∑
e∈S×S we.

Therefore v(Ar−1)−v(Ar) is the sum of weights we of edges
e between ir and a node in Ar. On the other hand the
value of expression v(Ar−1 \ {j})− v(Ar \ {j}) depends on
j: It is zero if ir = j, v(Ar−1) − v(Ar) when j 6= ir and
j /∈ Ar, otherwise, it is equal to the sum of weights we of
edges e between ir and a node in Ar \{j}. In particular this
is v(Ar−1)− v(Ar) when j is not adjacent to ir.

Lemma 8. For all IS games Γ = (G,w) one can construct
a system of parameters (Zjr) from Equation (3), witnessing
equality α(Γ) = β(Γ) = 1.

Proof. Lemma 7 allows us to define system of coeffi-
cients (Zjr) s.t. for all r,

∑
j Z

j
r = ∆r. Together with Def-

inition (1) and Proposition (2) this witnesses the fact that
α(Γ) = β(Γ) = 1.

In the construction we will regard OPT and RG as edge
orientations in the weighted graph (G,w). Note that ∆r is
the sum of weights of all edges oriented towards ir in RG.
Intuitively we redistribute this amount among coefficients
Zjr with 1 ≤ j ≤ m by comparing orientations OPT and RG.
Edges are considered in the order given by Reverse Greedy:

• Start with Zjr = 0 for all r and j.

• Run algorithm Reverse Greedy that constructs orien-
tation RG, updating coefficients during the algorithm:

• At each stage r: after choice of vertex ir we consider
edges (ir, j) oriented by Reverse Greedy towards ir.
There are two possibilities:

1. (ir, j) is oriented towards ir in both RG and OPT.
We set Zirr = Zirr + wir,j .

2. (ir, j) is oriented differently in OPT and RG. We
let Zjr = wir,j(= ajr) for such edges.

Note that the total weight assigned at stage r is ∆r(=
airr according to Lemma 7).

Hence inequality 0 ≤ Zjr ≤ ajr is true for j = ir too.

This completes the proof of Theorem 7 (a).

9.4 Proof of Theorem 7 (b)
Proof. Let

−→
G be an orientation of G = (V, E) of min-

imal Rényi entropy. Denote by OPT = (qi)i the indegree

distribution qi = v(i)
W
, where v(i) is the sum of weights of

all edges oriented in
−→
G towards vertex i ∈ V, and W is the

sum of all edge weights.
The Rényi entropy of OPT expands as follows:

Hλ(OPT ) =
1

1− λ log
∑
i∈V

qλi =
1

1− λ log
∑
i∈V

v(i)

W

[
v(i)

W

]λ−1

=
1

1− λ log
∑

(i,j)∈
−→
G

wi,j
W

[
v(i)

W

]λ−1

Since xλ−1 is decreasing for 0 ≤ λ < 1 we infer

Hλ(OPT ) ≥ 1

1− λ log
∑

(i,j)∈
−→
G

wi,j
W

[
max{v(i), v(j)}

W

]λ−1

The inequality is true for any λ > 1 as well, as xλ−1 is
now increasing but we multiply with negative constant 1

1−λ .

Let G[ be a biased orientation. Thus
vG[(i) =

∑
(i,j)∈E,v(i)>v(j) wi,j

Let BI = (q[i )i be its indegree distribution. By the defi-
nition of biasedness we have:

Hλ(OPT ) ≥ 1

1− λ log
∑

(i,j)∈E

wi,j
W

[
max{v(i), v(j)}

W

]λ−1

=

=
1

1− λ log
∑

(i,j)∈G[

wi,j
W

[
v(i)

W

]λ−1

=

=
1

1− λ log
∑
i∈V

vG[(i)

W

[
v(i)

W

]λ−1

=
1

1− λ log
∑
i∈V

q[i

[
v(i)

W

]λ−1

The Shapley value of an IS-game is [21] s(i) = 1
2

∑
i 6=j wi,j .

Thus, the Shapley distribution Sh = (si)i of such a game is

si = s(i)
W

. Hence Hλ(OPT ) ≥
1

1− λ log
∑
i∈V

q[i

[
2W · si
W

]λ−1

=
1

1− λ log
∑
i∈V

q[i (si)
λ−1 − 1

The difference between entropies of the optimal and Shap-
ley distribution can be written as follows:

Hλ(OPT )−Hλ(Sh) ≥ 1

1− λ log
∑
i∈V

q[is
λ−1
i − 1−

− 1

1− λ log
∑
i∈V

sλi =
[ 1

1− λ log
∑
i∈V

q[i (si)
λ−1 +

+
1

λ
log
∑
i∈V

sλi −
1

λ(1− λ)
log
∑
i∈V

(
q[i

)λ ]
+

1

λ(1− λ)
log
∑
i∈V

(
q[i

)λ
− 1

λ(1− λ)
log
∑
i∈V

sλi − 1

= hλ[BI, Sh] +
1

λ
Hλ(BI)− 1

λ
Hλ(Sh)− 1

Applying the discrete Gibbs Lemma we infer

Hλ(Sh)−Hλ(OPT ) ≤ 1

λ
(Hλ(Sh)−Hλ(BI)) + 1.

completing the proof.

Conclusions
The main contribution of this paper was to propose a para-
metric family of measures of worst-case fairness in coopera-
tive settings. It raises many open questions, e.g. (a). obtain
tight upper bounds for approximating strictly egalitarian,
marginalistic and other WCF measures in IS games (b). ob-
tain approximation guarantees for (general) TCSG games.
(c). study WCF in other settings, e.g. NTU games such as
coalitional resource games [22], or in the context of multiple
coalitions. (d). study tradeoffs between fairness and other
features of cooperative games.
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