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May 18, 2014

Abstract

We study hypergraph analogues of interacting particle systems and
random walks, notably generalizations of coalescing and annihilating
random walks. Their definition is motivated by the problem of ana-
lyzing the expected running time of a local search procedure for the
k-XOR SAT problem, as well as a certain constrained triad dynamics
in the theory of social balance.

1 Introduction

Interacting particle systems are discrete dynamical systems, usually defined
on lattices, studied intensely in Mathematical Physics [Lig04]. They can be
investigated on finite graphs as well [DW83, DW84] as finite Markov chains,
and correspond via duality to certain types of random walks [AF14]. The
analysis of these models can sometimes be used to bound the mixing time of
certain (hyper)graph coloring procedures [DW84, CT13].

A recent development in interacting particle systems and random walks
is the extension of the theory to hypergraphs [CT13, LP12, CD12, CFR13,
ALL14] and simplicial complexes [SKM12, PRT12]. We contribute to this di-
rection by studying hypergraph analogues of coalescing/annihilating random
walks and the voter model.
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Besides the obvious fundamental interest of such a generalization, the
models we consider are motivated by several apparently unrelated applica-
tions: the analysis of a local search procedure for the XOR-SAT problem, the
theory of social balance [AKR06] and that of lights-out games[Sch14]. On
the other hand the study of these systems, though it preserves some proper-
ties from the graph case has additional interesting features: for instance for
so-called annihilating random walks on hypergraphs the number of particles
is not in general nondecreasing (as it is in the graph case) and the structure
of recurrent states is interestingly constrained by systems of linear equations
similar to the ones used to analyze lights-out games [Sch14]. On the other
hand, in coalescing random walks on hypergraphs there may be more than
one copy of an initial ”ball” and the process is naturally described using
multisets rather than sets of balls.

The plan of the paper is as follows: first we define the models we are
interested in and outline their motivation. In Section 3 we present the (still
open in general) issue of reachability and recurrence for annihilating ran-
dom walks, together with a result settling this for our intended applications.
In such a setting, our main result (Theorem 4 in Section 4) upper bounds
expected annihilation time in terms of a Cheeger-like constant of the hyper-
graph. We conclude with an application of this result to the analysis of the
running time of a RandomWalk algorithm for instances of k-XOR-SAT and
other (brief) remarks.

2 Preliminaries and motivating examples

Hypergraphs considered in this paper are simple: for every two hyperedges
e, f , |e ∩ f | ≤ 1. On the other hand we will allow self-loops, i.e. hyperedges
e with |e| = 1. We will even allow multiple self-loops to the same vertex. A
multiset is a set whose elements have a (positive) multiplicity. The disjoint
union of multisets A and B, denoted A t B, is the multiset that adds up
multiplicities of an element in A and B.

Definition 1. Given constant k ≥ 2, an instance of k-XOR-SAT is a linear

system of boolean equations A·−→x =
−→
b , where A is an m×n matrix, for some

m,n ≥ 1, −→x = (x1, x2, . . . , xn)T is an n× 1 vector,
−→
b = (b1, b2, . . . , bm)T is

an m× 1 vector, and each equation has exactly k variables.

Though k-XOR-SAT can be solved in polynomial time by Gaussian elim-
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Algorithm RandomWalk(Φ):

Start with an arbitrary assignment U .
while (there exists some unsatisfied clause)

pick a random unsatisfied clause C
change the value of a random variable of C in U

return assignment U .

Figure 1: The RandomWalk algorithm

ination, we will analyze instead a local search procedure, the RandomWalk
algorithm displayed in Figure 1. The analysis of local procedures is quite
complicated in general, so performing such an analysis is, we feel, interest-
ing. Indeed, we will obtain rigorous upper bounds on the expected running
time of RandomWalk on solvable instances in terms of measurable parame-
ters of these instances.

A second motivation comes from the physics of complex systems and is
given by the following dynamics:

Definition 2. Constrained Triadic Dynamics[AKR06, Ist09]. We start
with a graph G = (V,E) whose edges are labeled 0/1. A triangle T is G
is called balanced if the sum of the labels of its edges is 0 (modulo 2). At
any step t, we chose an imbalanced triangle T uniformly at random and we
change the sign of a random edge of T (thus making T balanced). The move
might, however, make other triangles unbalanced.

CTD can be modeled by the RandomWalk algorithm on an instance of
3-XOR-SAT [RVYMO06]. As further shown in [Ist09], one can sometimes
analyze CTD using duality. We give here a slightly more general version,
suitable for the analysis of k-XOR-SAT:

Definition 3. Given instance Φ of k-XOR-SAT, the dual D(Φ) of Φ is an
undirected hypergraph with self-loops D(Φ) = (V ,E) defined as follows: V is
the set of equations of Φ. Hyperedges in D(Φ) correspond to variables in Φ
and connect all equations containing a given variable. In particular we add
a self-loop to an equation (vertex) v if it contains a variable appearing only
in v. We may even add multiple self-loops to the same vertex.
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Note that if Φ is an instance of k − XOR − SAT then D(Φ) is a k-
regular hypergraph. When viewed by duality the RandomWalk algorithm
translates to:

Definition 4 (Annihilating random walk (a.r.w.) on hypergraphs). Let H =
(V,E) be a connected hypergraph. Define a annihilating random walk on H
by the following: (a). Initial state: Initially: Ai ∈ {0, 1}. We will call a
vertex i with Ai = 1 live. (b). Moves: Choose random node i and random
edge (i, j1, . . . , jk) containing i. If node i is live then for r = 1, . . . , k make
Aj = 0 if j is live, Aj = 1 otherwise. Also make Ai = 0. If node i is not live
do not do anything.

Moves of the RandomWalk algorithm on an instance of k-XORSAT cor-
respond to moves of the a.r.w. from live nodes only. The upper bounds we
provide will, of course, work for this quantity as well.

It will be useful to define an analogue of coalescing random walks to
hypergraphs as well:

Definition 5 (Coalescing random walks (c.r.w.) on hypergraphs). Let H =
(V,E) be a connected hypergraph. Each vertex holds a multiset of label Ai.
Define a coalescing random walk on H by the following: (a). Initial state:
Ai = {i}. Note that A1 ∪ A2 ∪ . . . ∪ An = [n]. We will call a vertex i
with |Ai| = odd live. (b). Moves: Choose random node i. Choose random
hyperedge e = (i, j1, j2, . . . , jk). Make Ajr := Ajr t Ai, for r = 1, . . . , k,
Ai = ∅. Here t refers to the multiset union, i.e. union with multiplicities.
Note that the move never destroys any label (always A1∪A2∪ . . .∪An = [n])
but may make some indices i satisfy |Ai| = even. (c). Parity (coalescence):
ccoal(H) is the minimum t ≥ 0 such that |Aj| = even for every j.

Finally, we will need the ”dual” to coalescing random walks:

Definition 6 (Voter model on hypergraphs). Let H = (V,E) be a con-
nected hypergraph. Define a voter model on H by the following: (a). Ini-
tial state: Ai = {i}. Note that A1 ∪ A2 ∪ . . . ∪ An = [n]. W (b). Moves:
Choose random node i. Choose random hyperedge e = (i, j1, j2, . . . , jk). Make
Ai = tk

r=1Ajr . Note that the operation may decrease the number of different
”opinions” present in the system, if such opinions were only held by node
i. (c). Parity of opinions: Parity time cVM(H) is the minimum t such that
every initial opinion appears an even number of times (perhaps zero times)
in the system.
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3 Annihilating random walks: reachability and

recurrence

If the hypergraph H is a graph the long-term structure of configurations of
the a.r.w. is simple: either a single live site survives (if |V (H)| is odd) or
none. In the general case the behavior is more complicated: the number of
live nodes is not necessarily decreasing, as is the case in the graph setting.
There may be, therefore, recurrent states different from 0 and those states
with a single live node.

The structure of recurrent states is easy to determine, though, for satis-
fiable instances of k-XOR-SAT:

Theorem 1. Let Φ be a satisfiable instance of k-XOR-SAT. Let X1 be an
arbitrary assignment and let w1 be the configuration in the hypergraph D(Φ)
corresponding to X1. Finally let w2 be the ”all-zeros” configuration. Then w2

is reachable from w1. In other words a satisfying assignment X2 for Φ can
be found from initial assignment X1 by means of moves of the RandomWalk
algorithm.

In the general case setting can give [Ist09] a necessary condition for reach-
ability:

Definition 7. For every pair of boolean configurations w1, w2 : V (H) → Z2

on hypergraph H we define a system of boolean linear equations H(w1, w2)
as follows: Define, for each hyperedge e a variable ze with values in Z2. For
any vertex v ∈ V (H) we define the equation

∑
v∈e ze = w2(v)−w1(v). In the

previous equation the difference on the right-hand side is taken in Z2; also,
we allow empty sums on the left side. System H(w1, w2) simply consists of
all equations, for all v ∈ V (H).

Definition 8. If x is a state on H and l is a hyperedge of H, define x(l)(v) =
1 + x(v), if v ∈ l, x(v), otherwise.

Lemma 1. If state w2 is reachable from w1 then the system of equations
H(w1, w2) has a solution in Z2.

Proof. Let P be a path from w1 to w2 and let ze be the number of times
edge e is used on path P (mod 2). Then (ze)e∈E is a solution of system
H(w1, w2). Indeed, element w(v) (viewed modulo 2) flips its value anytime
an edge containing v is scheduled.
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In [Ist09] we claimed a partial converse of Lemma 1. As the result below
shows, though, the converse of Lemma 1 is however not true in graphs, or
even in hypergraphs with no graph edges:

Lemma 2. The following are true: There exists (a). a connected graph
(i.e. all hyperedges have size two) H, or (b). a connected hypergraph H that
contains no graph edges; there also exist two configurations w1, w2 on H such
that system H(w1, w2) has solutions in Z2, yet w2 is not reachable in H from
w1.

Proof. Assume that X is a solution to the system A · x = b. Let X0 be an
initial assignment. We will prove that a solution of the system is reachable
from X0 by induction on k, the Hamming distance between X0 and X.

• Case k = 0. Then X0 = X and there is nothing to prove.

• Case k = 1. Then X0 and X differ on a single variable z. Let w be an
equation containing z. Then X0 does not satisfy w (as X, which only
differs on z, does). Choosing equation w and variable z we reach X
from X0.

• Case k ≥ 2. If there is an equation w not satisfied by X0 (but satisfied
by X) then w must contain a variable on which X0 and X differ. Let
z be such a variable. Then by flipping z one can reach from X0 an
assignment X1 at Hamming distance k − 1 from X. Now it is easily
seen that system H(X1, X) has solutions: any solution of H(X0, X)
with the value of z flipped. By the induction hypothesis one can reach
a solution from X1, therefore from X0.

While we raise the complexity of reachability as an open problem, we
believe it is possible to ”patch” the result in [Ist09] (perhaps by imposing
meaningful restrictions on states w1, w2) and further extend it in order to
provide a large class of reachability instances for which the necessary con-
dition in Lemma 1 is also sufficient. We will aim to accomplish this in the
full/final version of the paper.
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1→ 0 0→ 1

0→ 10→ 1

0→ 0

0→ 1

0→ 1

0→ 1

0→ 1

Figure 2: Unreachability in (a). a graph (b). a hypergraph with no graph
edges. In each vertex the label of configuration w1 is written first, that of w2

next.

4 Upperbounding annihilation on hypergraphs

A particular setting where the previous result is applicable is given by our
motivating examples: the XOR-SAT problem if the system has a solution
and the CTD for social balance. Therefore with these cases in mind we can
define the hypergraph analogue of annihilation time:

Definition 9. Annihilation: cann(G) is the minimum t ≥ 0 such that
Ai = 0 for all i.

Definitions 4 and 5 enable upperbounding annihilation on hypergraphs.
It will be, however, easier to work in continuous, rather than discrete time.
Instead of choosing (at each integer step) one random live node and an edge
containing it, we will assume that the pairs consisting of live nodes and asso-
ciated edges get activated according to a Poisson process of an appropriate
rate (see [AF14]). We have:

Theorem 2. Suppose G is a hypergraph without graph partitions and w1

is a configuration such that the a.r.w. on G can reach annihilation. Then
one can couple the coalescing and annihilating random walks on G such that
cann(G) ≤ ccoal(G).

Proof. We will define the following stochastic process P :

1. Initial state: Ai = {(i,∞)}. Note that A1 ∪A2 ∪ . . . ∪An = [n]×∞
and that each Ai contains at most one index bi with (bi,∞) ∈ Ai.
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(ai,∞), Bi (aj,∞), Bj ∅ (ai, t), (aj, t), Bi ∪ Bj

(ai,∞), Bi Bj ∅ (ai,∞), Bi ∪ Bj

t→ t + 1

t→ t + 1

Figure 3: The two cases of stochastic process P . Only two nodes inside a
common hyperedge are pictured.

We will call such a set live and bi the witness for Ai. Also denote
Bi = Ai \ {(i,∞)} if i is live, Bi = Ai otherwise.

2. Move: At time t: Choose random vertex i (not necessarily live).
Choose random edge (i, j1, . . . , jk). For r = 1, . . . , k

• If both Ai, Ajr are live then make Ajr = (Bi∪Bjr)∪{(bi, t), (bjr , t)}.
• If, on the other hand, at most one of Ai, Ajr is live then make
Aj := Ai ∪ Ajr .

Finally make Ai = ∅. Note that if we ”move” a dead set Ai to a live
set Aj then Aj will still be live.

3. Stopping: Stopping time cP (G) is the minimum t ≥ 0 such that at
most one i is live (one if n is odd, none if n is even)

Claim 1. The following are true:

1. P observed on [n]×∞ and moves of live sets only is the annihi-
lating random walk on G. If n is even then at time cP (G) all particles
have annihilated. Consequently cann(G) ≤ cP (G).

2. P where we disregard second components in all pairs is identical to the
coalescent random walk on G and cP (G) = ccoal(G).

A ”proof by picture” is given in Figure 3. There are two cases: j is live
or not. In both cases the observed process is identical to the annihilating
random walk. Note that if n is even then when coalescence occurs in the
c.r.w. all particles have died in the a.r.w.

8



ai aj ∅ ∅

ai ∅ ∅ ai

t→ t + 1

t→ t + 1

Figure 4: First coupled version: annihilating random graphs (the two cases).
Only two nodes inside a common hyperedge are pictured.

ai, Bi aj, Bj ∅ ai, aj, Bi ∪ Bj

ai, Bi Bj ∅ ai, Bi ∪ Bj

t→ t + 1

t→ t + 1

Figure 5: Second coupled version: coalescing random walks (the two cases).
Only two nodes inside a common hyperedge are pictured.
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The a result such as the previous one is interesting is that on graphs (see
[AF14]) ccoal(G) is identical (via duality) to coalescence time of voter model
cVM(G), which can in turn be upper bounded in terms of a so-called Cheeger
coefficient of graph G, essentially the inverse of the more well-known Cheeger
constant of G. Similar results holds on hypergraphs:

Theorem 3. For any hypergraph H the coalescence time ccoal(H) and the
parity time of the associated voter model cVM(H) are identically distributed.

Proof. The proof is an adaptation of the classical duality argument [AF14]:
we will define a process on oriented hyperedges in H (that is edges with a
distinguished vertex) that will be interpreted in two different ways: as parity
in the voter model and coalescence in the coalescent random walk.

The process is described in Figure 6. There is a certain difficulty in
drawing pointed events in hypergraphs. In the figure we chose (in the interest
of readability) not to represent the hyperedges vertically, but as triangles with
a spatial extent, instead marking on the time axis the moment the given
hyperedge event occurs (times t1 and t2 in the coalescing random walk).
Horizontal lines (e.g. for ball 3 between moments t1 and t2) refer to histories
not interrupted by any hyperedge event between the corresponding times.A
horizontal line may be interrupted by a hyperedge event pointed at the given
node.

A left-right path P between node i and node j is a sequence of hyperedge
events and horizontal lines such that:

• P starts with a horizontal line of node i and ends with a horizontal line
of node j.

• Every horizontal line of a node is followed by a hyperedge event with
the corresponding node being pointed.

• Every hyperedge event is followed by an unique horizontal line corre-
sponding to a nonpointed node.

For instance, in the picture from Figure 6 we have represented three left-
right paths, between node 2 and each of nodes 1,4,5.

In the c.r.w. the activation of a hyperedge e = [j → i1, i2, . . . ir] pointed
at vertex j is interpreted as vertex j being chosen (together with edge e),
thus sending a copy of its cluster of balls to all other neighbors.
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0
t1 t2

t0

t0 0

33

2

5
5

4
4

1
1

2

Figure 6: Coupling the coalescing random walk and the voter model. Time
runs from left to right in the coalescing random walk and right to left in the
voter model. At time t1 (in the c.r.w.) copies of balls at (pointed) node 2
are sent to nodes 1 and 3. Similarly, at time t2 copies of cluster at (pointed)
node 3 are sent to nodes 4 and 5.

In the voter model the activation of a hyperedge e = [j → i1, i2, . . . ir]
pointed at vertex j is interpreted as j adopting the multiset union of opinions
of i1, i2, . . . , ir.

For instance, in the picture in Figure 6:

• in the c.r.w., assuming that initially Ai = {i}, i = 1, 5, at moment t0
we have A1 = {1, 2}, A2 = ∅, A3 = ∅, A4 = {2, 3, 4}, A5 = {2, 3, 5}.

• in the voter model at moment t0 we have A1 = {1}, A2 = {1, 4, 5},
A3 = {4, 5}, A4 = {4}, A5 = {5}. Label 3 has disappeared from the
system.

Just as in the ordinary c.r.w./voter model, the existence of a left-right
path between nodes i and j (e.g. (2, 1), (2, 4), (2, 5)) is interpreted as the
event:
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• In the c.r.w.: ”at time t0 node j holds a ball with label i.”

• In the voter model: ”at time t0 node i holds opinion j with multiplicity
at least one.”

Moreover one path may contribute (when it does) with exactly one ball/opinion
of a given type.

Consider now the event: ”at t0 every node on the right-hand side is
connected to nodes on the left-hand side by an even number of paths”.

• In the coalescing random walk this is equivalent to ”at t0 we have
coalescence”.

• In the voter model this is equivalent to ”at t0 we have parity of opinions”

Parzachevski et al.[PRT12] have given an extension of the Cheeger con-
stant to simplicial complexes. It turns out that we need a related but slightly
less demanding ”odd Cheeger constant” notion:

Definition 10. For a k-regular hypergraph H define coefficient τH as τH =

sup0<|A|<|V |
k|A||A|

n·|E(A,A)| , where E(A,A) is the set of all edges e of size at least

two, with an odd number of vertices in A and all other vertices in A.

The next result is useful only in hypergraphs for which E(A,A) 6= ∅ for
all 0 < |A| < |V |. In that case:

Theorem 4. E[cVM(H)] ≤ 2nτH · ln(2).

Proof. Consider a partition of the vertices of V into two parts, B and B and
consider the following process, similar to the ”two party voter model” from
[AF14]:

• At time t = 0 start the process with 0 on labels of vertices of B (”reds”)
and 1 on vertices of B (”blues”).

• choose a random vertex v and a random edge e 3 v and we let Av =∑
w 6=v∈e |Aw| (mod 2).

• We denote by NB
t the number of vertices that have label 0 at time t.
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• Denote by CB the first time when NB
t ∈ {0, N}, where N is the number

of vertices of G.

NB
t decreases by one exactly when the vertex chosen v has label 0 and

the edge e 3 v contains an odd number of nodes with label 1. On the other
hand it increases by one precisely when the vertex chosen v has label 1 and
the edge e 3 v has an odd number of nodes with label 1. Thus

Prob[NB
t+dt −NB

t = 1] ≥ 1

τH
· N

B
t · (n−NB

t )

n
, and

Prob[NB
t+dt −NB

t = −1] ≥ 1

τH
· N

B
t · (n−NB

t )

n
.

By an analysis similar to the case of voter models on graphs [AF14]

E[CB] ≤ nτH · ln(2).

Now note that state where all vertices have an odd number of balls cannot
be reached (is a so-called garden of Eden) in the coalescing random walk.
This corresponds by duality to the state where every opinion is present an
odd number of times in the system (in the voter model) also being a garden
of Eden, hence unreachable if B 6= ∅, B 6= V (G). So the event measured by
E[CB] is really parity of opinions.

We complete the rest of the proof along the lines of the corresponding
argument for graphs in [AF14].

5 Applications

Putting the last three inequalities together, applying them to k-XOR-SAT
and getting back from a continuous to an equivalent discrete time model
we get the following upper bound on convergence time of RandomWalk on
solvable instancesH of k-XOR-SAT whose dualD(H) is a simple hypergraph:

Theorem 5. Let Φ be a satisfiable instance of XOR-SAT such that H =
D(Φ) is simple. Then

E[RandomWalk] ≤ 2m2τD(H) · ln(2)

where m is the number of equations in H.

Details and many more results (e.g. upper bounds on annihilation similar
to those in [CEOR13]) should be a subject for the journal-length version of
this paper.
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6 Conclusions, open problems and Acknowl-
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It would be interesting to see if the running time of other local search pro-
cedures, perhaps for more interesting problems like k-SAT can be analyzed
in terms of (suitably defined) ”particle systems”.
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