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Abstract

We study minimum entropy submodular optimization, a common generaliza-
tion of the minimum entropy set cover problem, studied earlier by Cardinal
et al., and the submodular set cover problem (Wolsey [Wol82], Fujishige
[BIKP01], etc).

We give a general bound of the approximation performance of the greedy
algorithm using an approach that can be interpreted in terms of a particular
type of biased network flows. As an application we rederive known results for
the Minimum Entropy Set Cover and Minimum Entropy Orientation prob-
lems, and obtain a nontrivial bound for a new problem called the Minimum
Entropy Spanning Tree problem.

The problem can be applied to (and is partly motivated by) the definition
of worst-case approaches to fairness in concave cooperative games, similar to
the notion of price of anarchy in noncooperative settings.

Keywords: submodular set cover, minimum entropy, approximation
algorithms, cooperative games, fairness.

1. Introduction

Submodularity is a significant structural property of set functions, encod-
ing the notion of diminishing returns and plays a crucial role in many scientific
areas including combinatorial optimization [Fuj05], cooperative game theory
[Sha71, BDT08], information theory [MT10] and in applications involving
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clustering [NKI10], learning [GK11], social and sensor networks [KKT03],
natural language processing [LB10], signal processing [CK11] or constraint
satisfaction [AGR11], to give just a few examples. Submodular function op-
timization is a well-established paradigm and reasonably well-understood:
minimization has polynomial time algorithms [Sch00, Iwa03, IO09] while
maximization is intractable. On the other hand for well-behaved submodular
functions (so called integer polymatroids) f : P(S) → Z+ finding the max-
imum is simple: the ground set set S is a trivial solution. The interesting
problem is finding a solution (a subset A ⊆ S satisfying f(A) = f(S)) having
minimum cost. This is essentially an instance of the submodular set cover
problem [Fuj00].

Minimizing the cost of A is not the only possible objective function to
investigate in this setting: a maximum likelihood approach to an inference
problem in computational biology led Halperin and Karp [HK05] to study a
minimum entropy version of the set cover problem. Finding an optimal solu-
tion is in general NP-hard, but Halperin and Karp showed that the GREEDY
algorithm produces an approximate solution whose entropy differs only by a
constant factor to that of the optimal solution. A tight estimate was obtained
by Cardinal et al. [CFJ08a] who subsequently studied other combinatorial
problems under minimum entropy objectives [CFJ08b, CFJ12].

It must be stressed that minimizing entropy is an approach that goes be-
yond the problem studied by Halperin and Karp: for covering-type problems
the connection between maximum-likelihood and minimum entropy is quite
general. To give just one example, an even earlier problem that exploited the
connection between maximum likelihood and minimum entropy is word seg-
mentation [Wan01]. Minimizing entropic measures has other applications: for
instance, in [JW12] the authors consider a sparse dictionary-based approach
to maximum parsimony haplotype inference via minimizing a non-extensive
variant of the entropy called Tsallis entropy.

In this paper we unify these two directions, submodular optimization and
combinatorial optimization under minimum entropy objective function, by
investigating a minimum entropy version of the submodular set cover prob-
lem. While the problem is clearly NP-complete, our main result show that
the approximation performance of the GREEDY algorithm can be quanti-
fied using a covering-like parameter that has an interpretation in terms of
a type of certain “biased” network flows. This interpretation allows a fairly
illuminating rederivation of results in [CFJ08b, CFJ12]. We then showcase
the power of the method by providing an upper bound on the performance of
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the approximation performance of the greedy algorithm for a new problem,
the minimum entropy spanning tree problem.

Besides the conceptual integration the framework we investigate was de-
veloped with several applications in mind. The most important of them
(developed in a companion paper [BI12]) concerns the development of a
worst-case approaches to fairness in concave cooperative games similar in
spirit to the price of anarchy in noncooperative settings. The measure we
propose are based on entropic concepts such as the Shannon divergence. We
briefly outline this direction in Section 9. Other potential applications arise
in information theory [ST12] and maximum-likelihood approaches to ma-
chine learning (in settings inspired by [GB10, GK11]). We plan to further
explore and develop these connections in subsequent work.

The plan of the paper is as follows: in Section 2 we briefly review some
relevant concepts and notions. In Section 3 we point out the fact that the
problems we are interested in are computationally intractable (NP-complete);
we also introduce a greedy approach to minimum entropy submodular set
cover. In section 4 we discuss an integer programming formulation of this
problem. Section 5 contains our main result: we quantify the performance
of the GREEDY algorithm with the help of a ”covering constant” developed
using the IP in Section 4. We then rederive (in Section 6) existing results on
the performance of the GREEDY algorithm for the Minimum Entropy Ori-
entations and the Minimum Entropy Set Cover problems [CFJ08b, CFJ12].
Section 7 contains an interpretation of the covering constant using network
flows that allows us to tighten up our main theorem using a ”multi-level”
version of our covering constant. As an application we obtain a result on the
approximability of the Minimum Entropy Spanning Tree problem. We also
briefly discuss the intended application to cooperative game theory.

2. Preliminaries

We will assume general familiarity with submodular optimization, see e.g.
[Fuj05]. In particular a set function f : P(U)→ R+ will be called monotone
if f(S) ≤ f(T ) whenever S ⊆ T ⊆ U , submodular if f(S)+f(T ) ≥ f(S∪T )+
f(S ∩ T ) for all S, T ⊆ U , modular if f(S) + f(T ) = f(S ∪ T ) + f(S ∩ T ) for
all S, T ⊆ U , and polymatroidal if f is monotone, submodular and satisfies
f(∅) = 0.

We will use the Shannon entropy of a distribution P = (pi)i∈I , defined as
Ent(P ) = −

∑
i∈I pi log2(pi).
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An instance of the classical (Minimum Cost) Set Cover (SC) is specified
by an universe U and a family P = {P1, . . . ,Pm} of parts of U . Each set
Pi comes with a nonnegative cost c(i). The goal is to cover the set U by a
family of parts from P of minimal total cost.

The following classical extension of the set cover problem [Fuj00] shares
many properties with problem SC.

Definition 1. [SUBMODULAR SET COVER ] (SSC):

1. [GIVEN:] A set U and a monotone, submodular function f : P(U) →
Z+ and a cost function c : U → R+. The cost of a set S, denoted c(S),
is simply the sum of costs of its elements. Without lost of generality
we can assume that U = {1, 2, . . . ,m} (also denoted [m]). Define also
N = f(U).

2. [SOLUTIONS:] Subsets S ⊆ U with f(S) = f(U) (such a set is called
feasible).

3. [OBJECTIVE:] To find a feasible subset S ⊆ U of minimum cost.

In particular, the performance of the Greedy algorithm for SSC was stud-
ied by Wolsey [Wol82], who showed that results for SC extend to this setup.
Other generalizations were given, among other papers, in [BIKP01].

For readers not familiar with SSC it is worth discussing the representation
of problem SC as a special case of SSC, since a similar extension will motivate
the technical definition of the problem we are interested in.

Given any instance (X,P) of SC of unit costs, define corresponding in-
stance (U, f) of SSC as follows:

1. U = {1, 2, . . . ,m}.
2. For S ⊆ U define XS =

⋃
i∈S Pi and f(S) = |XS|.

It is well-known that function f defined above is submodular. A set
S ⊆ U with f(S) = f(U) corresponds to a family of parts {Pi}i∈S which
cover X.

Halperin and Karp introduced [HK05] a variation of the SC problem that
employs a different objective function:

Definition 2. [MINIMUM ENTROPY SET COVER (MESC)]:
Let X = {x1, x2, . . . , xn} for some n ≥ 1 and P = {P1, P2, . . . , Pm} be a

4



family of subsets of X which covers X. A cover is a function g : X → [m]
such that for every 1 ≤ i ≤ n,

xi ∈ Pg(i)(“xi is covered by set Pgi”)

The entropy of cover g is defined as

Ent(g) = −
∑
i∈U

g({i})
g(U)

ln

(
g({i})
g(U)

)
. (1)

The objective of MESC is to find a cover g of minimum entropy.

In the same way that problem SC was generalized to SSC, we extend
problem MESC from Definition 1 to the following:

Definition 3. [MIN-ENTROPY SUBMODULAR SET COVER]
(MESSC):

1. [GIVEN:] A set U and a polymatroidal function f : P(U)→ Z+.

2. [SOLUTIONS: ] A cover of f, that is a modular function g : P(U)→ Z+

with g(U) = f(U) and 0 ≤ g(S) ≤ f(S) for all S ⊆ U .
The entropy of cover g is defined as in equation (1).

3. [OBJECTIVE:] Find a cover g of f of minimum entropy.

3. Submodular Optimization with restrictions on solution struc-
ture: the Minimum Entropy Spanning Tree Problem

Many submodular optimization problems arise from cooperative games
on combinatorial structures [Bil00]. In such games solutions are subject to
further constraints: A natural example is the setting where solution compo-
nents form an independent set in a certain matroid.

Games on matroids, or where the possible coalitions form a matroid
have been thoroughly investigated in the literature (e.g. [NZKI97, Bil00,
BDJLL01, MRB07]). One could naturally define a ”min-entropy” version of
minimum-base games on matroids. Such games essentially capture all in-
stances of problem MESSC, as any integer polymatroid can be represented
using a set of flats in a certain matroid [Oxl06]. At this moment we are
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unable to deal with this problem in full generality. Instead we will concen-
trate on a special case, a combinatorial problem to which our main result
will apply in a fairly nontrivial way.

The problem we consider is a variant of spanning tree games a classi-
cal topic in the area of cooperative games on combinatorial structures (e.g.
[CK73, Bir76, GH81, GH84, FKFH97]):

Definition 4. [MIN-ENTROPY SPANNING TREE] (MEST):

1. [GIVEN:] A connected graph G = (V,E).

2. [SOLUTIONS: ] Given S ⊆ E, a cover of S is a function u : S → V
such that for all e ∈ S, u(e) is a vertex of e.

3. [OBJECTIVES:] A spanning tree T = (V,E(T )) ⊆ G and a cover u of
E(T ) that minimizes the entropy

Ent(T ;u) = −
∑
i∈V

|u−1({i}|
|E(T )|

log2

[
|u−1({i}|
|E(T )|

]
.

Intuitively in MEST players correspond to nodes of the graph, each of
which can only contribute (some of) the edges it is adjacent to, each
edge at a unit cost. The goal of the players is to form a spanning tree
with the contributed edges. We seek the “most unbalanced” (costwise)
spanning tree.

Unlike many of the settings in the papers quoted above we allow a player
to control a set of edges, rather than a single one. This particular choice
ensures the fact that the cost function is submodular. In contrast, in the
more classical variants of spanning tree games only a property weaker than
submodularity called permutational convexity holds [GH82].

Indeed, one can consider MEST as a problem with matroid restrictions
on solution structure by considering the cycle matroid M(G) of graph G, the
matroid whose independent sets consist of sets I of edges of G that do not
contain a cycle. Bases in this matroid correspond to spanning trees of G.
For all S ⊆ V define

f(S) = max{|I| : I ∈M(G),∀e ∈ I, e has at least one vertex in S} (2)

Lemma 1. Function f from equation (2) is submodular.
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Proof. Define g(S) to be the set of edges adjacent to S. Function g satisfies
g(S ∪ T ) = g(S) ∪ g(T ) and g(S ∩ T ) ⊆ g(S) ∩ g(T ). Let r be the rank
function of matroid M(G). Clearly, f(S) = r(g(S)).

Appling the submodularity of the rank function r to sets g(S) and g(T ) we
obtain: f(S∪T )+f(S∩T ) ≤ r(g(S∪T ))+r(g(S∩T )) ≤ r(g(S))+r(g(T )) =
f(S) + f(T )

3.1. Computational intractability of problems MESSC and MEST.

Problems MESC, MESSC, MEST defined so far are combinatorial opti-
mization problems. Turning them into decision problems is easy, though,
in the standard manner: we just add an extra cost parameter λ and ask to
decide whether the given instance has a solution of cost at most λ. Without
risk of confusion we will use the same name for the optimization problems
and their corresponding decision variants.

Since problem Minimum Entropy Set Cover Problem is NP-complete
[HK05], so is its generalization MESSC. Theorem 1 shows that this is true
for problem MEST as well, providing an alternate class of matroid restric-
tions (beyond those arising from set cover) for which the associated decision
problem is hard.

Theorem 1. Decision problem MEST is NP-complete.

The proof of Theorem 1 is given in the Appendix.

3.2. The Greedy Algorithm.

Given the previous result, to solve problems MESSC or MEST we have
to either resort to heuristic approaches or polynomial time approximation
algorithms [Vaz04, WS11]. In this paper we pursue the latter alternative.

An approximation algorithm based on the Greedy approach is presented
in Figure 1. Note that it is well known that the resulting vector is a solution1.

We will use, throughout the rest of the paper, the following notations:

1This is easiest seen using the dual language of cooperative games. In so-called concave
games (see Section 9 below) the core is non-empty [Sha71], a polytope whose extremal
points are those produced using a greedy approach on a given permutation of the elements
of U . Our algorithm simply produces a particular such permutation.
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GREEDY MESSC:

INPUT: An instance (U, f) of MESSC

S := ∅;
Set w to be the zero vector;
While (f(S) < f(U))

choose i ∈ U \ S that maximizes f(S ∪ {i})− f(S);
wi = f(S ∪ {i})− f(S);
S := S ∪ {i};

OUTPUT: Vector ∆ = (wi)i∈U .

Figure 1: Greedy algorithm for Minimum Entropy Submodular Set Cover.

� i1, i2, . . . , il will be the indices chosen by the GREEDY algorithm, in
this order. Furthermore, we define for 1 ≤ r ≤ l the greedy rank
function by

rank(ir) = r.

We extend function rank to all elements of U by considering an arbi-
trary (but fixed) ordering of such elements.

� For 1 ≤ r ≤ l, Wr = {i1, . . . , ir} is the set of first r elements added
by the GREEDY algorithm; also W0 = ∅. ∆r

GREEDY = wir is the
increase in the objective function caused by the r’th element chosen by
GREEDY .

Example 1. Given a graph G = (V,E), an instance of the problem MEST
in Definition 4, one can inductively complete the GREEDY algorithm, con-
structing a solution (S, u). S is a set of edges of G; initially S0 = ∅. At
stage r, given the current set of edges Sr−1 constructed so far and the index
ir chosen by the GREEDY algorithm, consider an independent set Ir of car-
dinality f(Wr) defined in equation (2). Employing the exchange axiom of the
cycle matroid we complete the independent set Sr−1 to an independent set
Sr by adding f(Wr)− f(Wr−1) elements from Ir. Finally, extend u to Sr by
defining u(e) = ir for all e ∈ Sr \ Sr−1 (all such edges are adjacent to ir).
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4. Integer Programming Formulation and a Covering Coefficient.

The minimum entropy set cover problem can be formulated as an inte-
ger programming problem (Figure 2 (a)). Similarly we can express MESSC
(Figure 2 (b), with convention 0 log(0) = 0) by a rather artificial integer
program, whose usefulness will become clearer at a later stage. In a nutshell,
the program provides a simple way to define the quantities measuring the
performance of the greedy algorithm in our main result.

min

[∑
S

−xS
|S|
n

log

(
|S|
n

)]
(3)

s.t.∑
S⊆T

xS ≥ 1, T ∈ P(U)

xS ∈ {0, 1}
(a) MESC

min

∑
i∈[m]

f({i})∑
λ=0

−xi,λ
λ

n
log

(
λ

n

)
(4)

s.t.

f({i})∑
λ=0

xi,λ = 1, i ∈ [m]

∑
i∈U−S

f({i})∑
λ=0

λxi,λ ≥ f(U)− f(S), S ⊆ [m]

xi,λ ∈ {0, 1}
(b) MESSC

Figure 2: Minimum Entropy Integer Programming formulations

Proposition 1. Given an instance of the MESSC, its solutions are in one-
to-one correspondence to solutions of IP problem defined in Figure 2 (b).

Proof. Given a solution z = (zj)j∈[m] of MESSC define xj,λ for j ∈ [m]
and 0 ≤ λ ≤ f({j}) as follows:

xj,λ =

{
1 if zj = λ
0 otherwise.

Claim 1. If z is a solution to MESSC then x is a feasible solution to sys-
tem (4).
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Proof. Since z is a cover, 0 ≤ zj ≤ f({j}) for every j ∈ [m] hence
obviously for any such j there is exactly one λ, 0 ≤ λ ≤ f({j}) with xj,λ = 1.

Thus

f({j})∑
λ=0

xj,λ = 1 and

f({j})∑
λ=0

λxj,λ = zj.

From the definition of cover
∑

j∈S zj ≤ f(S) and
∑

j∈U zj = f(U) there-
fore the second inequality follows.

Conversely, given a solution w of (4), define for j ∈ [m]

Xj =

f({j})∑
λ=0

λwj,λ. (5)

Claim 2. (Xj)j∈[m] defined above is a solution to MESSC whose entropy is
equal to the value of the objective function of (4) for w.

Proof. Equation (5) and system (4) ensure the fact that 0 ≤ Xj ≤
f({j}) for any j ∈ [m], and

∑
j∈S Xj ≤ f(S) for any S ⊆ [m], hence X is a

cover.

Since for any j ∈ [m] we have
f({j})∑
λ=0

wj,λ = 1, exactly one such term in the

above equality is 1, and the result immediately follows.

We now come up to a quantity that will play a fundamental role in our
results below: for any 1 ≤ r ≤ l we define

ajr = f(Wr)− f(Wr−1)− (f(Wr ∪ {j})− f(Wr−1 ∪ {j})) . (6)

The best way to make sense of the (admittedly unintuitive) definition of
the ajr coefficients above is to particularize them in the case of the set cover
problem. Observation 1 below shows that in this case coefficients ajr have a
very intuitive description: they represent the size of the intersection of the
j’th set Pj to the r’th set in the GREEDY solution.

Observation 1. Let us consider the setting in Example 2. Then

ajr = |XWr \XWr−1| − |XWr \ (XWr−1 ∪ Pj)| = |(XWr \XWr−1) ∩ Pj|

Proposition 2. For any 1 ≤ r ≤ l and 1 ≤ j ≤ m we have ajr ≥ 0.
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min[
∑
j∈[m]

f({j})∑
λ=1

−λ
n

log

(
λ

n

)
xj,λ] (7)

s.t.

f({j})∑
λ=0

xj,λ = 1, j ∈ [m]
∑
i∈U−S

Xi ≥ f(U)− f(S), S ⊆ [m]

f({j})∑
λ=0

λxj,λ = Xj, j ∈ [m] Xj =
l∑

r=1

Zj
r ,∀j ∈ [m]

xi,λ ∈ {0, 1} 0 ≤ Zj
r ≤ ajr, Z

j
r ∈ Z

Figure 3: Redundant IP formulation of MESSC

When j ∈ Wr this follows directly from the monotonicity of function
f. Assume now that j /∈ Wr, employ the submodularity of function f with
S = Wr and T = Wr−1 ∪ {j}.

We will find it useful to introduce a large number of apparently super-
fluous variables in system (4) as presented in Figure 3. Intuitively Zj

r is the
portion of optimal solution Xj that can be assigned to cover “the r’th set in
the greedy solution”. This explains the newly introduced constraints: first,
one has to allocate all of Xj and no more than that. Second, one cannot
allocate to any “set ir” more than “its intersection with Xj”. The quoted
statements above make full sense, of course, only for regular set cover (Ex-
ample 2)

To state the main result we need:

Definition 5. Given polymatroid G, let α = αG the smallest positive value
such that there exists an optimal solution of system (4) that can be completed
to a solution of system (7) by defining Zj

r so that inequalities

m∑
j=1

Zj
r ≤ α ·∆GREEDY

r (8)

hold for any 1 ≤ r ≤ l.
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Given the discussion above, intuitively α is a covering coefficient. It mea-
sures the amount of inherent “redundancy” into coverings of the GREEDY
solution by pieces obtained by breaking up the optimal solution. In this
sense, measure α has a somewhat similar flavor to the curvature of a sub-
modular cost function defined by Wan et al. in [WDPW10]. Of course, there
are some differences as well: the latter measure is relevant for minimum cost
submodular optimization. It also does not directly involve the GREEDY
solution (whereas, in the interest of tightness, our concept does).

Proposition 3. The coefficient α that satisfies system (8) is always greater
or equal to 1.

Proof. Sum all equations (8) for all r = 1, . . . , l.
The left-hand side is

l∑
r=1

(
m∑
j=1

Zj
r

)
=

m∑
j=1

(
l∑

r=1

Zj
r

)
=

m∑
j=1

Xj = N. (9)

On the other hand the right-hand side is

α ·
l∑

r=1

∆GREEDY
r ≤ α ·N, (10)

by the GREEDY algorithm. The result follows.

5. Main result.

In this section we state and prove our main result

Theorem 2. Given a polymatroid G = (U, f), the greedy algorithm produces
a solution fGREEDY to the instance G of MESSC related to the optimal cover
fOPT by relation:

Ent[fGREEDY ] ≤ 1

α
· [Ent[fOPT ] + log2(e)] + [1− 1

α
] log2(n) (11)

Proof.
Let (Xj)j∈[m] an optimal solution of the system from Figure (3) and

(yi)i∈[m] the solution generated by the greedy algorithm.
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By the greedy choice we infer

yr = f(Wr−1 ∪ {ir})− f(Wr−1)

for any 1 ≤ r ≤ l, with yi = 0 for other i.
We first prove several auxiliary results:

Claim 3. For any j ∈ [m] we have

l∑
r=1

ajr = f({j})

Proof. By the definition of ajr:

l∑
r=1

ajr =
l∑

r=1

(f(Wr)− f(Wr−1)− (f(Wr ∪ {j})− f(Wr−1 ∪ {j})))

= f(Wl)− f(W0)− (f(Wl ∪ {j})− f(W0 ∪ {j}))
= n− (n− f({j})) = f({j}).

The computations are justified by equalities f(W0) = 0 and f(Wl∪{j} =
f(Wl).

On the other hand, we have:

Claim 4. For any 1 ≤ r ≤ l and j ∈ [m] we have:

f({j})−
r∑

k=1

ajk = f(Wr ∪ {j})− f(Wr).

Proof.

r∑
k=1

ajk =
r∑

k=1

(f(Wk)− f(Wk−1)− (f(Wk ∪ {j})− f(Wk−1 ∪ {j})))

=
r∑

k=1

(f(Wk)− f(Wk−1))−
r∑

k=1

(f(Wk ∪ {j})− f(Wk−1 ∪ {j}))

= f(Wr)− f(W0)− (f(Wr ∪ {j})− f(W0 ∪ {j}))
= f(Wr)− f(Wr ∪ {j}) + f({j}).
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Claim 5. Given coefficient α from the definition (5) we have

l∏
r=1

yαyrr ≥
m∏
j=1

Xj!

Proof. By the greedy choice, Claim (4) and Claim (3)

yr = f(Wr−1 ∪ {ir})− f(Wr−1) ≥ f(Wr−1 ∪ {j})− f(Wr−1)

= f({j})−
r−1∑
k=1

ajk =
l∑

k=r

ajk

By the system in Figure (3) we have Zj
r ≤ ajr and we obtain:

yr ≥
l∑

k=r

Zj
k = Xj −

r−1∑
k=1

Zj
k

Therefore,

m∏
j=1

(
l∏

r=1

(yr)
Zj
k

)
≥

m∏
j=1

 l∏
r=1

(
Xj −

r−1∑
k=1

Zj
k

)Zj
k

 ≥
m∏
j=1

(Xj)!

On the other hand, by Definition (5)

m∏
j=1

(
l∏

r=1

(yr)
Zj
k

)
=

l∏
r=1

(yr)
∑m

j=1 Z
j
k ≤

l∏
r=1

(yr)
αyr .

With Claim (5) in hand, we get

ENT [fGREEDY ] = −
l∑

r=1

yr
n

log2

(yr
n

)
= −

l∑
r=1

yr
n

log2(yr) + log2(n)

= − 1

n

1

α

l∑
r=1

log2 y
αyr
r + log2 n = − 1

n

1

α
log2

l∏
r=1

yαyrr + log2 n

≤ − 1

n

1

α
log2

∏
j∈OPT

Xj! + log2 n
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Using inequality n! ≥
(
n
e

)n
:

ENT [fGREEDY ] ≤ − 1

n

1

α
log2

∏
j∈OPT

(
Xj

e

)Xj

+ log2 n

= − 1

n

1

α

∑
j∈OPT

Xj (log2Xj − log2 e) + log2 n

=
1

α

(
−
∑

j∈OPT

Xj

n
log2Xj

)
+

1

α
log2 e+ log2 n

=
1

α

(
−
∑

j∈OPT

Xj

n
log2

Xj

n
− log2 n

)
+

1

α
log2 e+ log2 n

=
1

α
(ENT [fOPT ] + log2 e) +

(
1− 1

α

)
log2 n

6. Applications: Minimum Entropy Set Cover, Minimum Entropy
Orientation.

A simple problem where one can determine the value of α is the Min-
imum Entropy Orientation (MEO) problem [CFJ08b, CFJ12]. Indeed, we
recover (using a different method) the upper bound on the performance of
the GREEDY algorithm for MEO (an algorithm that is, however, not opti-
mal [CFJ08b]). The result will be generalized next to problem MESC (with
an even simpler proof). We have chosen to include it here, though, in this
form as the proof is going to be useful in the analysis of problem MEST.

Definition 6. [MIN-ENTROPY ORIENTATION (MEO)]:

1. [GIVEN:] A graph G = (V,E).

2. [SOLUTIONS: ] An orientation of G is a function u : E → V such that
for all e ∈ E, u(e) is one of the vertices of edge e.

3. [OBJECTIVE:] To find an orientation u of G that minimizes

Ent(S;u) = −
∑
i∈[V

|u−1({i}|
|E|

log2

[
|u−1({i}|
|E|

]
.
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The MEO problem is a special case of MESC with sets corresponding
to vertices and elements to edges adjacent to the given vertex. Each in-
stance G = (V,E) of MEO can be regarded as an instance of MESC with
submodular cost function

c(S) = |{e ∈ E : E ∩ S 6= ∅}|.

Proposition 4. For any instance G of MEO αG = 1.

Proof. A simple application of formula (6) yields

ajr =


1, if ir 6= j, (ir, j) ∈ E, j 6∈ Wr

∆GREEDY
r , if ir = j

0, otherwise.
(12)

This choice allows us to turn an orientation of minimum entropy (cor-
responding to an optimal solution (Xi)i∈[m]) into the greedy orientation as
follows:

� At each stage r, after choice of ir we reorient edges (j, ir), j 6∈ Wr

that have different orientations in the optimal and greedy solution.
Correspondingly define Zj

r = 1 for such edges.

� Also let Zir
r be the number of edges (j, ir) that are oriented towards ir

in both the greedy and the optimal orientation. Note that there are at
most airr = ∆GREEDY

r such edges.

� Note that an edge that is reoriented at stage r is not reoriented again
at a later stage (because of the restriction j 6∈ Wr). Hence the process
ends up with the greedy solution. In other words∑

j

Zj
r = ∆GREEDY

r .

(as we add one unit for each edge counted by ∆GREEDY
r ).

We generalize the result above as follows:

Proposition 5. For any instance G of MESC αG = 1.
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Proof. First remember that, as noted in Observation 1, for MESC

ajr = |(XWr \XWr−1) ∩ Pj| (13)

Let u : [N ]→ [m] be an optimal solution to MESC, i.e. for any 1 ≤ i ≤ N ,
i ∈ Pu(i) and the cover specified by u has minimum entropy.

Denote, for j = 1, . . . ,m, Uj = {x ∈ [N ] : u(x) = j}. Uj ⊆ Pj is the set
of elements assigned by cover u to set Pj.

Define, for 1 ≤ r ≤ l

Zj
r = |Uj ∩ (XWr \XWr−1)|. (14)

Then 0 ≤ Zj
r ≤ ajr. Moreover

l∑
r=1

Zj
r =

l∑
r=1

|Uj ∩ (XWr \XWr−1)| = |Uj|

m∑
j=1

Zj
r =

m∑
j=1

|Uj ∩ (XWr \XWr−1)| = |XWr \XWr−1|,

(as each of the two state systems (Uj)j∈[m] and ((XWr \XWr−1))
l
r=1 consists

of disjoint sets) hence Xj = |Uj| and Zj
r satisfy system in Figure (3) and

equation (8) with α = 1.

7. Network flow interpretation and extension of the main result.

Sometimes the application of our main result to specific problems is not
quite as straightforward as above. An example is the Minimum Entropy
Spanning Tree problem from Definition 4. Intuitively, in this case we would
also like to apply Theorem 2 by proving that αG = 1. However, this second
result is not easy to obtain. To understand why, we will first reinterpret
constant αG using network flows. This will allow us to eventually define
a related constant βG. The difference between α and β is that roughly α
is defined in terms of one-stage network flows, whereas in β we will allow
multistage constructions.

We will prove a variant of Theorem 2 for constant β, then we will give a
multistage flow construction witnessing that for any instance (G,w) of MEST
β = 1. This will prove the desired result.
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Figure 4: Network flow interpretation of constant α in Definition 5.

s
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x2
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zs
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z2

z1

yl

...

y2

y1

t

Figure 5: Multistage flow network between solutions

Example 2. For the MEST problem we have

f(Wr)− f(Wr−1) = |{e ∈ E(G) : e = (ir, k), k ∼ ir, k 6∼ Wr−1}|

Similarly

f(Wr∪{j})−f(Wr−1∪{j}) = |{e ∈ E(G) : e = (ir, k), k ∼ ir, k 6∼ Wr−1∪{j}}|

Therefore

ajr =


1, if ir 6= j, ir ∼ j, j 6∈ Wr

|{k : k ∼ ir, k ∼ j, k 6∼ Wr−1}|, if ir 6= j, ir 6∼ j, j 6∈ Wr

∆GREEDY
r , if ir = j

0, otherwise.

(15)

Consider, though, the flow network in Figure 4. In addition to source/sink
nodes s, t, F has two layers of nodes; the first layer of nodes corresponding to
the optimal solution, the second layer of nodes corresponding to the greedy
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one. In each layer we have a node for every player in the game. Edges appear
between nodes of type k and ir, with capacity equal to ark. The fact that the
first layer of nodes corresponds to the optimal solution is reflected by setting
capacity XOPT

j on the edge between node s and node j. Similarly, capacities
between node ir of the second layer and node t are set to value ∆GREEDY

r .
These values are seen as requests of node Yr that may be satisfied by the flow
(which in general might send an amount larger than ∆GREEDY

r to this node)
It follows that αG = 1 amounts to the existence of a flow f of value n in

the flow network of Figure 4 (that is, f satisfies the request of each node Yr
exactly). More generally, α is the minimum amount needed to multiply the
capacities on the edges entering the sink t in order to accommodate a flow
with value n from s to t.

Our solution to problem MEO could be easily recast in terms of flows:
we construct the flow iteratively, by considering the paths between a node
in the first layer and a node in the second layer inductively, in an order
determined first by the order of second-layer nodes corresponding to the
GREEDY algorithm and then going on nodes in the first layer according to
a fixed ordering.

There are lessons to be learned from the construction this flow and our
proof of Theorem 2: The key point was that when we had to reorient an edge
towards a node in the greedy solution, we could do so without overflowing this
node. Similarly, the general proof depended on the following the invariant
we maintained

yr ≥
l∑

k=r

Zj
k (16)

Condition (16) does not have a direct flow interpretation, since yr is the
request, rather than the actual flow value at the given node. However, its
relaxation involving α does: the actual flow into node yr is at most αyr, so
requiring that the total flow into node yr is at least

∑l
k=r Z

j
k guarantees the

following relaxed version of equation (16): α · yr ≥
∑l

k=r Z
j
k. We will see (in

Proposition 6 below) that the relaxed condition can be applied as well.
We will generalize the setting of Theorem 2 by considering flow networks

with q ≥ 1 levels (see Figure 5 for q = 2). The nodes in each level are
ordered according to a fixed ordering, the same for all levels, say the ordering
induced by the GREEDY algorithm, with nodes not chosen by this algorithm
coming after all chosen nodes in a fixed, arbitrary sequence. Capacities in
this network correspond either to values arj (if the chosen indices are j and
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ir, respectively) or∞, for edges between nodes with the same index j but on
different levels. Note that each path ending in a greedy node with index ir
has finite capacity, at most the capacity of its last edge. We will use notation
P : [j . . . k] to indicate the fact that path P starts at node j on the first level
and ends at node k on the last level. We will also use notation P ∼ v to
indicate the fact that path P is adjacent to node v.

We will consider a total ordering < on paths which will be explicitly
constructed later.

Definition 7. A flow f is admissible with respect to total path ordering <
if for any path P between, say, node Xj and Yr, the remaining flow into node
Xj just before path P is considered is at most the final value of the final total
flow into node Yr. Formally∑

Q∼Xj ,P≤Q

f(Q) ≤
∑
W∼Yr

f(W ). (17)

Consider now a multiple-layer flow network corresponding to the optimal
and greedy solutions, respectively (that is, the capacities of edges from s/into
t are determined by the values of these solutions). Even with multiple layers
it might not be possible to obtain an admissible flow of value n. As before,
the solution is to multiply the capacities of edges leading into node t by some
fixed amount β.

Definition 8. Define βG as the infimum (over all multi-level flow networks
corresponding to the optimal and greedy solution) of all values β > 0 for
which there exists a path ordering < and a flow f admissible w.r.t. < such
that for every pair of nodes j and r,

∑
j

 ∑
P :[j...ir]

fP

 ≤ β ·∆GREEDY
r . (18)

The reader is requested to compare Definitions 5 and this definition.

Similarly to the proof of Proposition 3, we obtain β = βG ≥ 1 always. On
the other hand, admissibility will guarantee in general only a weaker version
of inequality (16): an extra β factor is needed on the left-hand side (though
this is not going to be weaker for the main setting we have in mind, β = 1).

With this discussion we generalize Theorem 2 as follows:
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Proposition 6. Given an instance G = (N, f), of MESSC the greedy algo-
rithm produces a solution fGREEDY satisfying

β ·Ent[fGREEDY ] ≤ Ent[fOPT ] + log2(e) + β log2(β) + (β − 1) log2(n). (19)

The proof is almost identical to that of Theorem 2: Let (Xi)i∈[m] an
optimal solution of the system from Figure (3) and (yi)i∈[m] the solution
generated by the greedy algorithm.

Consider a multi-layer flow network such that equation (18) is satisfied
with β = βG + ε, for some ε > 0. Let f be the corresponding admissible flow
and define Zj

r =
∑

P :[j...ir]
fP .

Claim 6. We have

l∏
r=1

[(βG + ε) · yr](βG+ε)yr ≥
∏

j∈OPT

Xj!.

As flow f is admissible,

(βG + ε) · yr ≥
l∑

k=r

Zj
k = Xj −

r−1∑
k=1

Zj
k.

This follows from considering the situation just before setting the flow on
the lexicographically smallest path between node j and ir: Xj −

∑r−1
k=1 Z

j
k is

the amount of unsent flow at node j, to be sent on a path to one of nodes
ir, . . . , il. No such path has been considered yet, as they are lexicographically
larger.

Therefore,

∏
j∈OPT

l∏
r=1

((βG + ε)yr)
Zj
k ≥

∏
j∈OPT

 l∏
r=1

(
Xj −

r−1∑
k=1

Zj
k

)Zj
k

 ≥
∏

j∈OPT

(Xj)!

On the other hand, by Definition (8)∏
j∈OPT

l∏
r=1

((βG + ε)yr)
Zj
k =

l∏
r=1

(βG + ε)yr
∑

j Z
j
r ≤

l∏
r=1

((βG + ε)yr)
(βG+ε)yr .

The rest of the computation is similar, except that we also have to take the
limit ε→ 0 in the end, to obtain the desired result.
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8. Application to the minimum entropy spanning tree problem.

Finally we are in position to apply the result in Proposition 6 by proving
the following:

Theorem 3. For any instance G of MEST, βG = 1. That is, if fGREEDY is
the cover provided by the GREEDY algorithm and fOPT is the optimal cover

Ent[fGREEDY ] ≤ Ent[fOPT ] + log2(e).

Proof. We will create a flow, admissible with respect to some total
path ordering <, that will witness the fact that βG = 1. To do so we first
revisit the GREEDY algorithm for MEST (Example 1).

As discussed there, the GREEDY algorithm builds an “independent set”
(forest, in the particular case of MEST) incrementally: edges are only added,
but not removed. After some stage k, 1 ≤ k ≤ l the edges added by the
GREEDY algorithm connect nodes in Wk to some other nodes. Denote by
δ(Wk) the set of nodes not in Wk but adjacent to some node in Wk (after
stage k).

Consider some stage r, 1 ≤ r ≤ l. Denote by C1, C2, . . . , Cp the connected
components (trees) created by the GREEDY algorithm after stage r − 1.
Node ir chosen at stage r will connect to some of its adjacent nodes (not
already selected), so that the resulted induced graph contains no cycles.

We infer the following:

� Any edge (ir, x), with x not in C1 ∪ C2 ∪ . . . ∪ Cp is added by the
GREEDY algorithm (charged to ir) at stage r.

� The GREEDY algorithm also adds some of the edges (ir, x), where
x belongs to a connected component among C1, C2, . . . , Cp. It can
only add such an edge if ir is not already connected to some node in
that component (necessarily a member of Wr−1), thus creating a cycle.
More precisely, in this case it will add exactly one edge for each such
component it’s adjacent to, merging in effect these components.

Even in this case, note that x cannot belong to Wr−1, but to δ(Wr−1).
Indeed, suppose x were an element in Wr−1. Edge (ir, x) was not added
when x was considered because it was creating a cycle. But then adding
it would create a cycle now as well.

As a consequence of the previous analysis the following holds:
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ir

Wr−1

C1

C2

C3

Cp

x

Figure 6: The GREEDY algorithm for MEST: at stage r, it adds edges from
ir to nodes in components C1, C3, Cp (merging them). It does not add an edge
to component C2, as there already existed a (shaded) edge from ir to a node
in C2 ∩Wr−1. It also adds edges (ir, x) to nodes x outside of C1, C2, . . . , Cp.

Lemma 2. Suppose edge (ir, x) is added by the GREEDY algorithm at stage
r. Then

rank(x) > r,

where rank(x) is the GREEDY rank of the element x, the stage when the
element x was chosen.

Element x clearly cannot belong to Wr−1, if x falls in the first case of
the previous discussion. As for the second case, by the argument there x ∈
δ(Wr−1), which implies the fact rank(x) > r.

We will also need a flow property that ensures flow admissibility in the
particular case of the MEST problem:

Definition 9. A flow is biased (with respect to vertex ordering r) if, for all
nodes j, l

∃P : [j, l], fP > 0⇒ [rank(j) ≥ rank(l)]. (20)

The importance of this notion lies in the fact that, while condition (20) is
not necessarily satisfied “between the endpoints” of a flow, biased flows can
intuitively be “composed”, as rank inequality is transitive.
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Next we prove the following claim:

Lemma 3. Given an instance X of the MEST problem let XOPT and YGREEDY
be the vectors corresponding to the optimal and greedy solution, respectively,
with elements ordered according to the ordering induced by the greedy algo-
rithm.

Then there exists a biased flow f with initial values XOPT and final values
YGREEDY .

Let TOPT be the spanning tree (with oriented edges) corresponding to
XOPT , and let TGREEDY be the spanning tree with oriented edges corre-
sponding to YGREEDY . We will construct a multi-level flow network and a
greedy flow in stages, corresponding to edge moves that transform TOPT into
TGREEDY . Flow values on some node v on an intermediate level correspond
to edges oriented towards v at that stage.

Allowed moves are of two basic types:

1. “Edge reversals”. Consider an edge e = (w1, w2) in the current tree,
oriented towards w2. We reorient edge e towards w1. Biased edge
reversals are those with rank(w1) < rank(w2).

w1

w2

e

w1

w2

e

. .

. .

. .

.

. .

. .
.

. .

. .

. .

w2

w1

Figure 7: Edge reversals and associated flow.

2. “Rotations”. Consider an edge e = (w1, w2) in the current tree,
oriented towards w1, and let w3 be another vertex connected to w1,
such that edge (w1, w3) is not in the tree. Replace (w1, w2) by (w1, w3).

We will use, in fact, a third type, specified as follows, composed of the
previous two moves.
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. .

. .

w1 w1

Figure 8: Edge rotations and associated flow.

3. “Edge slidings”. Let a, b, c be three nodes Assume that edge (b, c) is
in the current tree (oriented towards b) and edge (a, b) is not. Replace
edge (b, c) by edge (a, b), oriented towards a by first doing a “rotation”
(move of type 2) around node b, and then reorienting edge (a, b) towards
a (move of type 1). Biased edge slidings are those corresponding to the
case rank(a) < rank(b) < rank(c).

a

b

c

a

b

c
. . .
. . .
. . .
. .
. . .
. . .

.
. . .
. . .
. . .

b b

a

Figure 9: Edge slidings and associated flow.

How do these moves correspond to flows ?

1. The edge reversal (w1, w2) corresponds (Figure 7) to one unit of flow
from node w2 to node w1 on the next level.

2. The rotation (w1, w2, w3) as described above corresponds (Figure 8) to
one unit of flow from node w1 to node w1 on the next level.
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3. An edge sliding (Figure 9) involves using two levels of the flow network.

It is easy to see that flows associated to biased edge reversals and rota-
tions, or to preserving an edge (and its orientation) satisfy the biased flow
condition. Hence (by composability of biased flows) this holds for biased
slidings as well.

It remains to show that we can transform TOPT to TGREEDY using biased
moves of type 1,2 and 3. The strategy comprises three parts, described by
the following:

(a). Consider all edges e ∈ TOPT ∩ TGREEDY , oriented in the same way in
both trees. We need to do nothing about them.

(b). Consider all edges e = (a, b) ∈ TOPT ∩ TGREEDY , with opposite orien-
tations in the two trees. We will reorient them by an edge reversal.

(c). Consider all edges in TOPT \TGREEDY . We will iteratively replace such
edges with edges in TGREEDY \ TOPT , in a way such that the resulting
intermediate graphs are in fact trees.

The strategy for iterative replacement employs the current tree, de-
noted by T1. Initially T1 = TOPT . Let us consider an edge e = (a, b) ∈
T1 \ TGREEDY . e is in fact in TOPT \ TGREEDY , as edges added in the
iterative process belong to TGREEDY . Assume without loss of generality
that rank(a) > rank(b). Since e ∈ E and e 6∈ TGREEDY , a is connected
to a node c with rank(c) < rank(b) in the same component to b (thus
creating a cycle that would preclude adding edge e). c is in fact the
neighbor of a on the unique path towards the root of TGREEDY .

Eliminating e from T1 breaks down the set of vertices into two dis-
joint connected components S and T , with endpoints a, b into disjoint
components. Together with the edges of TGREEDY , edge e determines
an unique cycle C, consisting of the edges on the path from the root
towards a and b, respectively, plus edge e. There exists, therefore an
edge e′ 6= e on this cycle C, whose endpoints are one in S and one in
T . We infer the fact that e′ ∈ TGREEDY \ T1.
If e′ is on the path from a to the root of TGREEDY then we can use
slidings to eliminate edge e from the tree and add edge e′ to the tree
instead. We may also need to perform the reversal of edge e before
we can make the sliding (in case that edge e is oriented towards b in
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rootGreedy

c

b

a

e

e’ TS

Figure 10: Iterative transformation of edges from TOPT \TGREEDY into edges
in TGREEDY \ TOPT in Lemma 3. First the edge e is reoriented towards a.
Then we slide it into e′.

TOPT ). But since rank(c) < rank(b) all resulting flows (including the
one corresponding to reorienting edge e and then sliding it) are biased.

If on the other hand e′ is on the path from b to the root of TGREEDY then
we first use a greedy edge reversal (possible, as rank(a) > rank(b)),
then edge slidings to replace e′ by e. In both cases, crucially all resulting
flows (including the one corresponding to reorienting edge e and then
sliding it) are biased.

We only have to show that the resulting graph T ′1 = T1 \ e+ e′ is a tree
(acyclic), so that the invariant is respected. Indeed, e′ has its endpoints
in S and T , respectively, and is the unique edge of T ′1 with this property.
Therefore it is part of no cycle in T ′1. Since T1 was acyclic, T ′1 is acyclic
too (hence a tree).

Each edge move of one of the three types above corresponds to a distinct
path in the flow network, described as follows:

(a). Edges e shared (with the same orientation, say towards node j) between
TOPT and TGREEDY correspond to paths between vertices with the same
index j.

(b). Reorienting an edge e = (j, l) from j towards l corresponds to sending
one unit of flow from node j on the first level to node l on the next
one, and then routing that unit of flow across nodes with label l.
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Figure 11: (a). Transfoming the greedy to the optimal solution using the
moves from Lemma 3. (b). The associated biased flow.

(c). Moves of type [c.] correspond to flows in a similar way, except that they
might involve multiple edges (to comply with capacity constraints), and
thus multiple nontrivial steps. As argued, though, above, all resulting
flows are biased.

We exemplify the transformation from the previous lemma in the example
from Figure 11. The graph G consists of three nodes, considered in the order
rank(a) < rank(b) < rank(c) by the GREEDY algorithm. To go from the
optimal solution to the greedy one we first reverse orientation on the edge
(a,b). This corresponds to one unit of flow from node b to node a (and
subsequently being routed to nodes labeled a). The second transformation
consists of first performing an edge reversal on edge (b, c) and then sliding
edge (b, c) towards a. The associated flow goes from b to a, going through
nodes labeled c, exemplifying the fact that the biased condition is only valid
at the extremities of the flow.

Definition 10. Let < be any total path ordering such that:

1. All paths (j, s), j 6= s come before all paths of type (p, p).

2. Among paths of the first type Pi = (ji, li), i = 1, 2, l1 < l2 ⇒ P1 < P2.

Lemma 4. The flow f constructed in the proof of Lemma 3 is admissible
with respect to <.
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Consider a path P between nodes j and im, such that f(P ) > 0. There
are two cases:
Case 1: j 6= im.
Then, by the biased nature of the flow, j 6∈ Wm−1, that is node j is a
candidate for the greedy algorithm at stage m. Since im was chosen instead,
the number of edges that would be oriented towards j, should it be chosen at
stage m, is less or equal to the number of edges oriented towards im at that
stage. The second quantity is (by the definition of the GREEDY algorithm)
nothing but Yim .

To interpret the first quantity, we will associate edges in TOPT \TGREEDY
to paths of unit flow starting from j, in such a way that all edges mapped
to some path Q, P ≤ Q, could be oriented towards j should this node be
chosen at stage m.

First, note that every possible edge (j, l) with l ∈ Wm−1, oriented towards
j in the spanning tree TOPT is either present in TGREEDY (but necessarily
oriented towards l) or has been replaced (using the process of step [c]) by
an edge rooted at some vertex v of even lower rank than l. Thus the edge
corresponds to a one unit of flow on some path Q between j and l (or v), a
path that is lexicographically smaller than P .

Similarly, if l is not itself in Wm−1 but is in δ(Wm−1), and j is connected
to a node in the same connected component as l (after step m − 1 of the
GREEDY algorithm) , then edge (j, l) cannot be in TGREEDY , under any
orientation (or else it would create a cycle C). When considered by the
GREEDY algorithm it is swapped under step [c.]. Note that cycle C (except
edge (j, l)) is contained in Wm−1 ∪ δ(Wm−1), with every edge in this cycle
being assigned to a vertex in Wm−1. Hence the edge also corresponds to
a one unit of flow on some path Q between j and l (or v), a path that is
lexicographically smaller than P .

Thus any unit of flow from node j sent on a path that is scheduled after
path P corresponds to some edge (j, l) not covered by one of the previous
two cases. All remaining such edges are among those available for j at stage
m, were it to be chosen by the GREEDY algorithm. Their number is, as we
saw, at most Yim , the flow into im in the GREEDY solution.
Case 2: j = im.
This is trivial, as P is the only path leaving node j at this stage (and is
among those that arrive at j).

Hence the flow is admissible.
To complete the proof of Theorem 3, we simply apply Proposition 6.
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9. Application to Cooperative Games

The setting in this paper has an alternative reformulation using the lan-
guage of cooperative game theory [BDT08]. Indeed, a problem in this area is
our main target application and originally motivated our research. It forms
the subject of a companion paper [BI12]. Here we only provide a brief outline
of our approach.

A transferable utility (TU) coalitional (cost) game consists of a finite set
of players U and a monotone function (called characteristic cost function)
c : P(U) → R that satisfies c(∅) = 0. A set T ⊆ U is called a coalition,
with T = U called the grand coalition. A TU game is called concave if its
cost function is submodular. Denote N the cardinal of U . A cost allocation
(imputation) is simply a vector x = (x1, . . . , xN) ∈ RN

+ .
The notion of rationality of a cost allocation is embodied by the core of a

cooperative game G = (U, c) defined as the set of cost allocations that satisfy
the following conditions:

1. Efficiency:
∑

i∈U xi = c(U).

2. Individual rationality: 0 ≤ xi ≤ c({i}), for all i ∈ U .

3. Coalitional rationality:∑
i∈S

xi ≤ c(S), ∀ ∅ 6= S ⊆ U ;

Clearly core elements in a concave game can be regarded as solutions to
the corresponding instance of submodular set cover.

Allocations in the core may be seen as “rational”, but they need not nec-
essarily be “fair”. The classical approach to fairness in cost allocations is
axiomatic, and identifies the celebrated Shapley Value [Rot88] as the unique
cost allocation satisfying several natural conditions. However, despite its
intrinsic attractiveness and conceptual power, the Shapley value may be
inappropriate as a “fair” solution concept for many reasons, including the
setting of coalitions with a dynamic structure , in games (necessarily not
concave) for which the Shapley value is not in the core, or in the presence of
social preferences in favor of other social arrangements (e.g. egalitarianism
[DR89]).

This is not to say that any particular alternative to the Shapley value
would fare better: for one, any such measure would violate at least one of
the axioms that uniquely identify the Shapley value, and may have other
drawbacks.
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The situation is somewhat similar to the issues arising in non-cooperative
settings with respect to Nash equilibria, the canonical concept of rationality
in that setting. Just as the core of a cooperative game may be very large,
a non-cooperative game may have multiple Nash Equilibria. Some of these
equilibria may be “suboptimal” the selfish nature of goals pursued by indi-
vidual agents may lead to suboptimal system performance. As long as we
cannot exclude some of these equilibria there is no way to rule out suboptimal
behavior.

The seminal work of Roughgarden and Tardos [RT02],[Rou05] has opened
an interesting avenue in dealing with the multiplicity of equilibria in nonco-
operative settings. Instead of attempting to propose a normative solution
to equilibrium selection, their price of anarchy measure takes a worst-case
perspective, quantifying the degradation in system performance due to un-
coordinated behavior, measured on the worst strategy profile still compatible
with individual rationality.

The objective of paper [BI12] is to propose approach with a similar phi-
losophy for cooperative games. Rather than attempting to postulate any
particular “fair solution” of a cooperative game, we will investigate the fair-
ness of an arbitrary allocation in the core.

Fairness will be measured with respect to a “baseline” cost distribution
q, deemed “reasonable”. Given an arbitrary cost distribution p we will use
the Shannon divergence D(p||q) =

∑
i∈I pi log2(pi/qi) to measure the “dis-

tance” of distribution p with respect to the baseline distribution q. Note
that D is not a metric (as it does not satisfy the triangle inequality) but is
a pseudo-metric and has been employed before as a “distance” between two
distributions.

Given a cooperative game G, its worst-case fairness with respect to cost
allocation q is defined as the supremum of D(p||q) over all distributions p
arising from an imputation in core(G).

Depending on the way to select q we may have several versions of the
worst-case fairness measures, including the following ones:

� strictly egalitarian: q is the uniform distribution qi = 1/N .

� egalitarian: q is the egalitarian solution of Dutta and Ray [DR89].

� marginalist: q is the cost distribution corresponding to the Shapley
value.
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The strictly egalitarian worst-case fairness can be directly related to the
setting of this paper, as in that case Shannon divergence directly relates
to entropy. Certainly this seting is the the most controversial in terms of
applicability, though strict egalitarianism as an approach has featured in a
substantive manner in economics and other social sciences.One can further
justify its study on grounds related to mechanism design: suppose the coop-
erative game is not “given” but can be imposed on the set of players. Viewed
this way strictly egalitarian worst-case fairness is a measure of the design,
rather than the resulting cost allocation.

On the other hand the connection between divergence and entropy ex-
tends (perhaps in a more limited setting) to marginalist approaches too: for
certain games (including the induced subgraph games from [DP94]) one can
quantify the performance of the GREEDY and other approximation algo-
rithms to the marginalist worst-case fairness. Once again we refer to [BI12],
where full details will be provided.

10. Conclusions

Obtaining a tight result for entropy minimization problem on matroids
remains a topic for further research. We believe that β = 1 at least for a
large class of particular versions of this problem. Formulating and proving
such a result remains still open, though. Even in the case of MEST we don’t
know whether our result is optimal.

The game theoretic investigations opened by our results have multiple
variations: notions of “worst-case fairness” can be investigated for a variety
of combinatorial games [BDT08], for various other solution concepts such as
the ε-core, the least core, the kernel or the nucleolus.

Finally, as mentioned, the problem we studied has some promising po-
tential applications. It would be interesting to develop these applications.
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Appendix: Proof of Theorem 1

We will use an idea related to the strategy employed to prove the NP-
completeness of the Minimum Labeling Spanning Tree Problem [CL97]. We
will provide a reduction from the NP-complete problem Minimum Entropy
Set Cover to MEST.

Indeed, let M = (U,P) be an instance of Minimum Entropy Set Cover
problem, with U = {1, 2, . . . , n} and P = {P1, P2, . . . , Pm}.

Define a graph GM as follows:

1. GM has one super-node R, m + n − 1 auxiliary nodes A1, . . . Am+n−1
(connected only to R), m nodes corresponding to sets P1, P2, . . . , Pm
and n nodes corresponding to elements 1, 2, . . . n, respectively.

2. Nodes corresponding to Pi are connected to R and to nodes correspond-
ing to elements j, j ∈ Pi.

3. These are all edges of GM .

To relate the minimum entropy spanning tree on GM and the minimum
cover on M we need the following

Claim 7. Let 1 ≤ a ≤ b ≤ a+ b ≤ W . Then

− a

W
log2(

a

W
)− b

W
log2(

b

W
) ≥ −a− 1

W
log2(

a− 1

W
)− b+ 1

W
log2(

b+ 1

W
).

Proof. This is equivalent to

a− 1

W
log2(

a

a− 1
) + log2(

a

W
) ≤ b

W
log2(

b+ 1

b
) + log2(

b+ 1

W
).

or

1

W
log2[(1 +

1

a− 1
)a−1] + log2(

a

W
) ≤ 1

W
log2[(1 +

1

b
)b] + log2(

b+ 1

W
).

This follows easy from the monotone increasing nature of function g(x) =
(1 + 1

x
)x.

So let us consider a spanning tree TM in GM of minimum entropy. TM has
to contain edges between R and Ai (as they are the unique edge containing
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Figure 12: Graph GM in the construction from Theorem 1

vertex Ai). Moreover, by a simple application of the claim, we may assume
without loss of generality that edge (T,Ai) in the minimum entropy solution
is contributed by vertex T , who has degree at least m + n − 1 from the
auxiliary nodes only, thus larger or equal to that of nodes P1, . . . , Pm, in the
spanning tree TM .

Assume now, for the sake of contradiction, that some node Pi would be a
node unconnected to R in TM . Thus Pi is connected to some non-leaf node
j. Deleting edge Pi, j, adding edge R,Pi (contributed by R) and taking into
account that the degree of node j in TM is at most m we would get a tree of
lower entropy.

The conclusion of this argument is that each node Pi is connected to R
in TM , with edge (R,Pi) contributed by R.

From this conclusion it follows easily that every node j is connected in
TM to at most one Pi (or else TM would have a cycle), thus corresponding
to a cover D in M . Moreover, to be a minimum entropy cover C of TM we
may assume that each such edge is contributed by node Pi.

To compute the entropy of cover C of TM we first consider the contribution

34



of node R, equal to

−2m+ n− 1

2(m+ n)
log2[

2m+ n− 1

2(m+ n)
]

Assuming node Pi has degree di in cover C, the contribution of such nodes
to the entropy of cover C is

−
m∑
i=1

di
2(m+ n)

log2
di

2(m+ n)
= − 1

2(m+ n)

[
m∑
i=1

di (log2 di − log2 2(m+ n))

]
=

= − 1

2(m+ n)

[
m∑
i=1

di log2(di)− n log2 2(m+ n)

]
=

=
n

2(m+ n)

[
−

m∑
i=1

di
n

log2

(
di
n

)]
+

n

2(m+ n)
log2

2(m+ n)

n
.

Thus

Ent(C) =− 2m+ n− 1

2(m+ n)
log2

2m+ n− 1

2(m+ n)
+

n

2(m+ n)
log2

2(m+ n)

n
+

+
n

2(m+ n)
· Ent(D),

in particular instance M has a cover of entropy at most λ if and only if instance
GM of MEST has a cover of entropy at most

−2m+ n− 1

2(m+ n)
log2

[
2m+ n− 1

2(m+ n)

]
+
n log2(2 + 2m/n)

2(m+ n)
+

n

2(m+ n)
· λ.
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